Breast cancer detection: Shallow convolutional neural network against deep convolutional neural networks based approach

被引:17
|
作者
Das, Himanish Shekhar [1 ]
Das, Akalpita [2 ]
Neog, Anupal [3 ]
Mallik, Saurav [4 ,5 ,6 ]
Bora, Kangkana [1 ]
Zhao, Zhongming [4 ,7 ]
机构
[1] Cotton Univ, Dept Comp Sci & Informat Technol, Gauhati, India
[2] GIMT Guwahati, Dept Comp Sci & Engn, Gauhati, India
[3] IQVIA, Dept AI & Machine Learning COE, Bengaluru, Karnataka, India
[4] Univ Texas Hlth Sci Ctr Houston, Ctr Precis Hlth, Sch Biomed Informat, Houston, TX 77030 USA
[5] Harvard TH Chan Sch Publ Hlth, Dept Environm Hlth, Boston, MA USA
[6] Univ Arizona, Dept Pharmacol & Toxicol, Tucson, AZ USA
[7] Univ Texas Hlth Sci Ctr Houston, McGovern Med Sch, Dept Pathol & Lab Med, Houston, TX 77030 USA
关键词
breast cancer; medical imaging; deep learning; convolutional neural networks; transfer learning; CLASSIFICATION; MAMMOGRAMS; SYSTEM; MODEL;
D O I
10.3389/fgene.2022.1097207
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Introduction: Of all the cancers that afflict women, breast cancer (BC) has the second-highest mortality rate, and it is also believed to be the primary cause of the high death rate. Breast cancer is the most common cancer that affects women globally. There are two types of breast tumors: benign (less harmful and unlikely to become breast cancer) and malignant (which are very dangerous and might result in aberrant cells that could result in cancer). Methods: To find breast abnormalities like masses and micro-calcifications, competent and educated radiologists often examine mammographic images. This study focuses on computer-aided diagnosis to help radiologists make more precise diagnoses of breast cancer. This study aims to compare and examine the performance of the proposed shallow convolutional neural network architecture having different specifications against pre-trained deep convolutional neural network architectures trained on mammography images. Mammogram images are pre-processed in this study's initial attempt to carry out the automatic identification of BC. Thereafter, three different types of shallow convolutional neural networks with representational differences are then fed with the resulting data. In the second method, transfer learning via fine-tuning is used to feed the same collection of images into pre-trained convolutional neural networks VGG19, ResNet50, MobileNet-v2, Inception-v3, Xception, and Inception-ResNet-v2. Results: In our experiment with two datasets, the accuracy for the CBIS-DDSM and INbreast datasets are 80.4%, 89.2%, and 87.8%, 95.1% respectively. Discussion: It can be concluded from the experimental findings that the deep network-based approach with precise tuning outperforms all other state-of-the-art techniques in experiments on both datasets.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Deep Convolutional Neural Networks for Breast Cancer Detection
    Roy, Ankit
    2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 169 - 171
  • [2] A deep convolutional neural network based framework for breast cancer detection
    Dutta, Debrina
    Chakraborty, Debashis
    PROCEEDINGS OF 2020 6TH IEEE INTERNATIONAL WOMEN IN ENGINEERING (WIE) CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (WIECON-ECE 2020), 2020, : 436 - 439
  • [3] Breast Cancer Detection using Deep Convolutional Neural Network
    Mechria, Hana
    Gouider, Mohamed Salah
    Hassine, Khaled
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE (ICAART), VOL 2, 2019, : 655 - 660
  • [4] Malware detection approach based on deep convolutional neural networks
    El Merabet, Hoda
    Hajraoui, Abderrahmane
    INTERNATIONAL JOURNAL OF INFORMATION AND COMPUTER SECURITY, 2023, 20 (1-2) : 145 - 157
  • [5] Deep Convolutional Neural Networks for breast cancer screening
    Chougrad, Hiba
    Zouaki, Hamid
    Alheyane, Omar
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 157 : 19 - 30
  • [6] A deep convolutional neural network approach for astrocyte detection
    Ilida Suleymanova
    Tamas Balassa
    Sushil Tripathi
    Csaba Molnar
    Mart Saarma
    Yulia Sidorova
    Peter Horvath
    Scientific Reports, 8
  • [7] A deep convolutional neural network approach for astrocyte detection
    Suleymanova, Ilida
    Balassa, Tamas
    Tripathi, Sushil
    Molnar, Csaba
    Saarma, Mart
    Sidorova, Yulia
    Horvath, Peter
    SCIENTIFIC REPORTS, 2018, 8
  • [8] Enhancing Breast Cancer Detection Through a Tailored Convolutional Neural Network Deep Learning Approach
    Job Prasanth Kumar Chinta Kunta
    Vijayalakshmi A. Lepakshi
    SN Computer Science, 5 (7)
  • [9] Cervical Cancer Cell Detection Based on Deep Convolutional Neural Network
    Xia, Mingyang
    Zhang, Guoshan
    Mu, Chaoxu
    Guan, Bin
    Wang, Mengxuan
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 6527 - 6532
  • [10] Smoke Detection Based on Deep Convolutional Neural Networks
    Tao, Chongyuan
    Zhang, Jian
    Wang, Pan
    2016 2ND INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS - COMPUTING TECHNOLOGY, INTELLIGENT TECHNOLOGY, INDUSTRIAL INFORMATION INTEGRATION (ICIICII), 2016, : 150 - 153