Effects of simultaneous CO2 addition to the fuel and oxidizer streams on soot formation in co-flow diffusion ethylene flame

被引:12
|
作者
Yang, Yu [1 ]
Zheng, Shu [1 ]
He, Yuzhen [1 ]
Liu, Hao [1 ]
Sui, Ran [2 ]
Lu, Qiang [1 ]
机构
[1] North China Elect Power Univ, Natl Engn Res Ctr New Energy Power Generat, Beijing 102206, Peoples R China
[2] Missouri Univ Sci & Technol, Dept Mech & Aerosp Engn, Rolla, MO 65409 USA
关键词
CO 2 addition to fuel; oxidizer streams; Co-flow ethylene flame; Soot inception; Soot surface growth; Soot oxidation; CARBON-DIOXIDE; PAH; OXYGEN;
D O I
10.1016/j.fuel.2023.129181
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Soot formation in a co-flow diffusion ethylene flame with the addition of CO2 to the fuel (the CO2-F), oxidizer (the CO2-O), and fuel/oxidizer (the CO2-F/O) streams was numerically and experimentally investigated in this study. The effects of different CO2 addition ways on soot inception, soot condensation, H-abstraction-C2H2addition (HACA) and oxidation by O2/OH processes, were quantitatively analyzed by introducing the integrated reaction rates over the whole computational domain. The simulated and experimental results showed that the CO2-F/O was the most effective in inhibiting soot formation and flame temperature, followed by the CO2-O, and the CO2-F. Compared with the CO2-F, the suppression effect of the CO2-O on soot inception was weaker due to the higher concentration of benzo(ghi) fluoranthene (BGHIF). Since the rate of C4H2 formation via C2H4 & RARR; C2H3 & RARR; C2H2 & RARR; C4H2 was inhibited by the CO2-O, lowering the consumption rate of acenaphthalene (A2R5) via C4H2 + A2R5=>A4, more A2R5 converted to BGHIF via A2R5 & RARR; A2- & RARR; A2 & RARR; BGHIF. The suppression effects of different ways of CO2 addition on HACA surface growth and soot condensation were identical: CO2-F < CO2-O < CO2-F/O. The decrease of benzo(a)pyrene (BAPYR) mole fraction accounted for the decline of soot condensation rate, and the decreases of H and OH mole fractions were responsible for the drop of HACA surface growth rate. Compared with the CO2-F, the CO2-O and the CO2-F/O had stronger suppression effects on the soot oxidation by O2 process due to the lower concentration of O2 in the oxidizer stream. Whichever CO2 addition ways were adopted, the soot oxidation by O2 process was more sensitive than the soot oxidation by OH process with the CO2 addition.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [31] Effects of NH 3 addition on polycyclic aromatic hydrocarbon and soot formation in C 2 H 4 co-flow diffusion flames
    Ren, Fei
    Cheng, Xiaogang
    Gao, Zhan
    Huang, Zhen
    Zhu, Lei
    COMBUSTION AND FLAME, 2022, 241
  • [32] Impact of ammonia addition on soot and NO/N2O formation in methane/air co-flow diffusion flames
    Yang, Yu
    Zheng, Shu
    Sui, Ran
    Lu, Qiang
    COMBUSTION AND FLAME, 2023, 247
  • [33] Effect of CO2/H2O addition on laminar diffusion flame structure and soot formation of oxygen-enriched ethylene
    Liang Bowen
    Wang Chengjing
    Zhang Yindi
    Liu Bing
    Zeng Fanjin
    Takyi, Shadrack Adjei
    Tontiwachwuthikuld, Paitoon
    JOURNAL OF THE ENERGY INSTITUTE, 2022, 102 : 160 - 175
  • [34] Influence of Co-flow on Flickering Diffusion Flame
    Fujisawa, N.
    Matsumoto, Y.
    Yamagata, T.
    FLOW TURBULENCE AND COMBUSTION, 2016, 97 (03) : 931 - 950
  • [35] Synchronization of dual diffusion flame in co-flow
    Fujisawa, Nobuyuki
    Imaizumi, Kenta
    Yamagata, Takayuki
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2020, 110
  • [36] Influence of Co-flow on Flickering Diffusion Flame
    N. Fujisawa
    Y. Matsumoto
    T. Yamagata
    Flow, Turbulence and Combustion, 2016, 97 : 931 - 950
  • [37] A Computational Study of Radiation and Gravity Effect on Temperature and Soot Formation in a Methane Air Co-flow Diffusion Flame
    Bhowal, Arup Jyoti
    Mandal, Bijan Kumar
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING (ICME 2015), 2016, 1754
  • [38] Effect of ammonia on the soot surface characteristics in ammonia/ethylene co-flow diffusion flames
    Zhang, Feng
    Li, Shuanglong
    Liu, Qianqian
    Sun, Jingyun
    Wei, Xin
    Gu, Mingyan
    Wang, Yang
    Huang, Xiangyong
    FUEL, 2023, 341
  • [39] Effects of Acetylene Addition to the Fuel Stream on Soot Formation and Flame Properties in an Axisymmetric Laminar Coflow Ethylene/Air Diffusion Flame
    Xie, Xinrong
    Zheng, Shu
    Sui, Ran
    Luo, Zixue
    Liu, Shi
    Consalvi, Jean-Louis
    ACS OMEGA, 2021, 6 (15): : 10371 - 10382
  • [40] Experimental study of the effect of CO2 on temperature and soot volume fraction in C2H4/air co-flow laminar diffusion flame
    An, Xiuli
    Cai, Weiguang
    Yang, Yu
    Zheng, Shu
    Lu, Qiang
    RSC ADVANCES, 2023, 13 (12) : 8173 - 8181