What a twist: structural biology of the SARS-CoV-2 helicase nsp13

被引:0
|
作者
Horrell, Sam [1 ]
Martino, Sam [2 ]
Kirsten, Ferdinand [3 ]
Berta, Denes [2 ]
Santoni, Gianluca [4 ]
Thorn, Andrea [3 ]
机构
[1] Diamond Light Source, Harwell Sci & Innovat Campus, Didcot, England
[2] UCL, Dept Phys & Astron, London, England
[3] Univ Hamburg, Inst Nanostruktur & Festkorperphys, Hamburg, Germany
[4] European Synchrotron Radiat Facil, Grenoble, France
关键词
SARS-CoV-2; COVID-19; helicase; structural biology; structure based drug design; SARS CORONAVIRUS HELICASE; SINGLE-STRANDED-DNA; CRYSTAL-STRUCTURE; ARTERIVIRUS HELICASE; ENZYMATIC-ACTIVITIES; ZINC-FINGERS; RNA; REPLICATION; PROTEINS; SEQUENCE;
D O I
10.1080/0889311X.2024.2309494
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
SARS-CoV-2 nsp13 is a multifunctional helicase from helicase superfamily 1B. It unwinds the viral RNA genome for replication and is thought to play a role in 5' mRNA capping to produce mature mRNA using its triphosphatase activity. The sequence and structure are highly conserved in nidovirales and the protein is essential to the viral infection cycle, acting as a standalone enzyme and in conjunction with other SARS-CoV-2 proteins, making SARS-CoV-2 helicase a promising target for structure-based drug design. By inhibiting helicase activity, phosphatase activity, or its interaction with the RNA-dependent RNA polymerase we could interrupt viral replication. A total of 72 structures of SARS-CoV-2 nsp13 have been published in the protein databank (PDB) to date, 56 monomers and 16 as part of a complex. The structure of nsp13 is made up of five conserved folds, from N- to C-terminus, a zinc-binding domain, stalk domain, beta barrel domain 1B, RecA-like subdomain 1A, and RecA-like subdomain 1B. This review summarizes the current structural and functional knowledge surrounding SARS-CoV-2 nsp13 and related helicases, as well as the structure-based drug design efforts to date, and other complementary knowledge to provide downstream users of SARS-CoV-2 structures with a solid foundation to better inform their work.
引用
收藏
页码:202 / 227
页数:26
相关论文
共 50 条
  • [31] Drug repurposing screen to identify inhibitors of the RNA polymerase (nsp12) and helicase (nsp13) from SARS-CoV-2 replication and transcription complex
    Kuzikov, Maria
    Reinshagen, Jeanette
    Wycisk, Krzysztof
    Corona, Angela
    Esposito, Francesca
    Malune, Paolo
    Manelfi, Candida
    Iaconis, Daniela
    Beccari, Andrea
    Tramontano, Enzo
    Nowotny, Marcin
    Windshuegel, Bjorn
    Gribbon, Philip
    Zaliani, Andrea
    VIRUS RESEARCH, 2024, 343
  • [32] Natural Compounds Inhibit SARS-CoV-2 nsp13 Unwinding and ATPase Enzyme Activities
    Corona, Angela
    Wycisk, Krzysztof
    Talarico, Carmine
    Manelfi, Candida
    Milia, Jessica
    Cannalire, Rolando
    Esposito, Francesca
    Gribbon, Philip
    Zaliani, Andrea
    Iaconis, Daniela
    Beccari, Andrea R.
    Summa, Vincenzo
    Nowotny, Marcin
    Tramontano, Enzo
    ACS PHARMACOLOGY & TRANSLATIONAL SCIENCE, 2022, 5 (04) : 226 - 239
  • [33] Molecular dynamics simulations of the flexibility and inhibition of SARS-CoV-2 NSP 13 helicase
    Raubenolt, Bryan A.
    Islam, Naeyma N.
    Summa, Christoper M.
    Rick, Steven W.
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2022, 112
  • [34] The SARS-CoV-2 proteins NSP1 and NSP13 inhibit interferon activation through distinct mechanisms
    Vazquez, Christine
    Swanson, Sydnie
    Negatu, Seble
    Dittmar, Mark
    Ramage, Holly
    Cherry, Sara
    Jurado, Kellie
    JOURNAL OF IMMUNOLOGY, 2021, 206
  • [35] SARS-CoV-2 viral proteins NSP1 and NSP13 inhibit interferon activation through distinct mechanisms
    Vazquez, Christine
    Swanson, Sydnie E.
    Negatu, Seble G.
    Dittmar, Mark
    Miller, Jesse
    Ramage, Holly R.
    Cherry, Sara
    Jurado, Kellie A.
    PLOS ONE, 2021, 16 (06):
  • [36] SARS-CoV-2 nsp13 Restricts Episomal DNA Transcription without Affecting Chromosomal DNA
    Li, Aixin
    Zhang, Bei
    Zhao, Kaitao
    Yin, Zhinang
    Teng, Yan
    Zhang, Lu
    Xu, Zaichao
    Liang, Kaiwei
    Cheng, Xiaoming
    Xia, Yuchen
    JOURNAL OF VIROLOGY, 2023, 97 (07)
  • [37] Structural biology of SARS-CoV-2 leader protein (nsp1)
    Kaub, Johannes
    Akinselure, Toyin
    von Soosten, Lea
    Santoni, Gianluca
    Thorn, Andrea
    CRYSTALLOGRAPHY REVIEWS, 2024, 30 (02) : 118 - 134
  • [38] Structural biology of SARS-CoV-2 endoribonuclease NendoU (nsp15)
    Horrell, Sam
    Santoni, Gianluca
    Thorn, Andrea
    CRYSTALLOGRAPHY REVIEWS, 2022, 28 (01) : 4 - 20
  • [39] Multi-stage structure-based virtual screening approach towards identification of potential SARS-CoV-2 NSP13 helicase inhibitors
    El Hassab, Mahmoud A.
    Eldehna, Wagdy M.
    Al-Rashood, Sara T.
    Alharbi, Amal
    Eskandrani, Razan O.
    Alkahtani, Hamad M.
    Elkaeed, Eslam B.
    Abou-Seri, Sahar M.
    JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY, 2022, 37 (01) : 563 - 572
  • [40] SARS-CoV-2 Nsp13 Catalytic Efficiency is Regulated by ATP: Mg2+Stoichiometry and Functional Cooperativity Among Nsp 13 Molecules
    Haren, Caitlin
    Sommers, Joshua
    Loftus, Lorin
    Jones, Martin, III
    Lee, Rebecca
    Dumm, Adaira
    Brosh, Robert, Jr.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2023, 299 (03) : S355 - S356