UPL-SFDA: Uncertainty-Aware Pseudo Label Guided Source-Free Domain Adaptation for Medical Image Segmentation

被引:12
|
作者
Wu, Jianghao [1 ]
Wang, Guotai [1 ,2 ]
Gu, Ran [1 ]
Lu, Tao [3 ]
Chen, Yinan [4 ]
Zhu, Wentao [5 ]
Vercauteren, Tom [6 ]
Ourselin, Sebastien [6 ]
Zhang, Shaoting [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
[2] Shanghai AI Lab, Shanghai 200030, Peoples R China
[3] Univ Elect Sci & Technol China, Sichuan Prov Peoples Hosp, Dept Radiol, Chengdu 610072, Peoples R China
[4] SenseTime Res, Shanghai 200233, Peoples R China
[5] Zhejiang Lab, Res Ctr Healthcare Data Sci, Hangzhou 311100, Peoples R China
[6] Kings Coll London, Sch Biomed Engn & Imaging Sci, London WC2R 2LS, England
基金
中国国家自然科学基金;
关键词
Adaptation models; Predictive models; Image segmentation; Training; Entropy; Minimization; Head; Source-free domain adaptation; self-training; fetal MRI; heart MRI; entropy minimization; FETAL-BRAIN MRI;
D O I
10.1109/TMI.2023.3318364
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Domain Adaptation (DA) is important for deep learning-based medical image segmentation models to deal with testing images from a new target domain. As the source-domain data are usually unavailable when a trained model is deployed at a new center, Source-Free Domain Adaptation (SFDA) is appealing for data and annotation-efficient adaptation to the target domain. However, existing SFDA methods have a limited performance due to lack of sufficient supervision with source-domain images unavailable and target-domain images unlabeled. We propose a novel Uncertainty-aware Pseudo Label guided (UPL) SFDA method for medical image segmentation. Specifically, we propose Target Domain Growing (TDG) to enhance the diversity of predictions in the target domain by duplicating the pre-trained model's prediction head multiple times with perturbations. The different predictions in these duplicated heads are used to obtain pseudo labels for unlabeled target-domain images and their uncertainty to identify reliable pseudo labels. We also propose a Twice Forward pass Supervision (TFS) strategy that uses reliable pseudo labels obtained in one forward pass to supervise predictions in the next forward pass. The adaptation is further regularized by a mean prediction-based entropy minimization term that encourages confident and consistent results in different prediction heads. UPL-SFDA was validated with a multi-site heart MRI segmentation dataset, a cross-modality fetal brain segmentation dataset, and a 3D fetal tissue segmentation dataset. It improved the average Dice by 5.54, 5.01 and 6.89 percentage points for the three tasks compared with the baseline, respectively, and outperformed several state-of-the-art SFDA methods.
引用
收藏
页码:3932 / 3943
页数:12
相关论文
共 50 条
  • [21] Source-Free Domain Adaptation for Medical Image Segmentation via Selectively Updated Mean Teacher
    Wen, Ziqi
    Zhang, Xinru
    Ye, Chuyang
    INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2023, 2023, 13939 : 225 - 236
  • [22] Source-Free Domain Adaptation for Semantic Segmentation
    Liu, Yuang
    Zhang, Wei
    Wang, Jun
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 1215 - 1224
  • [23] Guided Curriculum Model Adaptation and Uncertainty-Aware Evaluation for Semantic Nighttime Image Segmentation
    Sakaridis, Christos
    Dai, Dengxin
    Van Gool, Luc
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 7373 - 7382
  • [24] Uncertainty-Aware Label Rectification for Domain Adaptive Mitochondria Segmentation
    Wu, Siqi
    Chen, Chang
    Xiong, Zhiwei
    Chen, Xuejin
    Sun, Xiaoyan
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT III, 2021, 12903 : 191 - 200
  • [25] SS-SFDA : Self-Supervised Source-Free Domain Adaptation for Road Segmentation in Hazardous Environments
    Kothandaraman, Divya
    Chandra, Rohan
    Manocha, Dinesh
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 3042 - 3052
  • [26] Multi source-free domain adaptation based on pseudo-label knowledge mining
    Zhou, Fang
    Xu, Zun
    Wei, Wei
    Zhang, Lei
    PATTERN RECOGNITION LETTERS, 2025, 187 : 80 - 85
  • [27] Asymmetric Source-Free Unsupervised Domain Adaptation for Medical Image Diagnosis
    Zhang, Yajie
    Huang, Zhi-An
    Wu, Jibin
    Tan, Kay Chen
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 234 - 239
  • [28] Guiding Pseudo-labels with Uncertainty Estimation for Source-free Unsupervised Domain Adaptation
    Litrico, Mattia
    Del Bue, Alessio
    Morerio, Pietro
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 7640 - 7650
  • [29] Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer
    Ai, Yuang
    Zhou, Xiaoqiang
    Huang, Huaibo
    Zhang, Lei
    He, Ran
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024, 2024, : 8142 - 8152
  • [30] Source-free domain adaptation for semantic image segmentation using internal representations
    Stan, Serban
    Rostami, Mohammad
    FRONTIERS IN BIG DATA, 2024, 7