Biodiesel Production from Waste Cooking Oil Using Different Types of Catalysts

被引:11
|
作者
Ulukardesler, Ayse Hilal [1 ]
机构
[1] Bursa Uludag Univ, Vocat Sch Tech Sci, TR-16059 Bursa, Turkiye
关键词
biodiesel; waste cooking oil; renewable energy; catalysts; transesterification; FREE FATTY-ACIDS; HETEROGENEOUS CATALYST; AMBERLYST; 15; OPTIMIZATION; ESTERIFICATION; TRANSESTERIFICATION; FEEDSTOCK;
D O I
10.3390/pr11072035
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The global energy demand is increasing day by day. Fossil fuels such as crude oil, coal and gas are the main source of energy worldwide. However, fossil fuels, which cause acid rain, the greenhouse effect and other such environmental problems, will eventually be depleted, and renewable energy seems to be the most reasonable solution in this regard. Renewable biofuels have significant potential and can meet the world's current energy demand. One of the important biofuels is biodiesel, and in the future it can replace petroleum. Waste cooking oil was used as a raw material in biodiesel production in order to reduce the production cost of the offered additive. In this study, the aim was to optimize the process parameters for biodiesel production within the acceptable limit values in the literature. Therefore, the molar ratio of methanol to waste cooking oil (9:1-15:1), catalyst concentration (1-5% by weight) and reaction time (60-120 min) were studied for two catalyst types, potassium hydroxide and ion exchange resin Amberlyst 15. The biodiesel obtained with maximum efficiency for each catalyst was also compared with the international biodiesel standards.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Waste Cooking Oil Conversion to Biodiesel Using Solid Bifunctional Catalysts
    Aderibigbe, Fatai Alade
    Saka, Harvis Bamidele
    Mustapha, Sherif Ishola
    Amosa, Mutiu Kolade
    Shiru, Suleiman
    Tijani, Idowu Abdulfatai
    Babatunde, Esther Oluwabunmi
    Bello, Bisola Taibat
    CHEMBIOENG REVIEWS, 2023, 10 (03) : 293 - 310
  • [32] Enzymatic Alholysis For Biodiesel Production From Waste Cooking Oil
    Maceiras, R.
    Cancela, A.
    Vega, M.
    Marquez, M. C.
    CISAP4: 4TH INTERNATIONAL CONFERENCE ON SAFETY & ENVIRONMENT IN PROCESS INDUSTRY, 2010, 19 : 103 - 107
  • [33] Biodiesel production from waste cooking oil: A brief review
    Suzihaque, M. U. H.
    Alwi, Habsah
    Ibrahim, Ummi Kalthum
    Abdullah, Sureena
    Haron, Normah
    MATERIALS TODAY-PROCEEDINGS, 2022, 63 : S490 - S495
  • [34] Metakaolinite as a catalyst for biodiesel production from waste cooking oil
    Jorge Ramirez-Ortiz
    Merced Martinez
    Horacio Flores
    Frontiers of Chemical Science and Engineering, 2012, 6 (4) : 403 - 409
  • [35] Electrohydrodynamic processing in biodiesel production from waste cooking oil
    Wilkanowicz, S. I.
    Kao, P. -K.
    Saud, K. T.
    Wilinska, I.
    Ciesinska, W.
    FUEL, 2024, 373
  • [36] Pilot Plant of Biodiesel Production from Waste Cooking Oil
    Liu Guangrui
    Chen Guanyi
    ADVANCES IN CHEMICAL ENGINEERING II, PTS 1-4, 2012, 550-553 : 687 - 692
  • [37] Economic analysis of biodiesel production from waste cooking oil
    Avinash, A.
    Murugesan, A.
    ENERGY SOURCES PART B-ECONOMICS PLANNING AND POLICY, 2017, 12 (10) : 890 - 894
  • [38] Biodiesel production from waste cooking oil in a microtube reactor
    Tanawannapong, Yuttapong
    Kaewchada, Amaraporn
    Jaree, Attasak
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2013, 19 (01) : 37 - 41
  • [39] Characterization of Waste Cooking Oil for Biodiesel Production
    Alias, Nur Imamelisa
    JayaKumar, Javendra Kumar A. L.
    Zain, Shahrom Md
    JURNAL KEJURUTERAAN, 2018, 1 (02): : 79 - 83
  • [40] Biodiesel production using waste cooking oil: a waste to energy conversion strategy
    Amanpreet Kaur Sodhi
    Sonal Tripathi
    Krishnendu Kundu
    Clean Technologies and Environmental Policy, 2017, 19 : 1799 - 1807