Automated assessment of the extent of mangroves using multispectral satellite remote sensing data in Google Earth Engine

被引:0
|
作者
Sarkar, Rupsa [1 ]
Gnanappazham, L. [2 ]
Pandey, A. C. [1 ]
机构
[1] Cent Univ Jharkhand, Dept Geoinformat, Ranchi 835205, Jharkhand, India
[2] Indian Inst Space Sci & Technol, Thiruvananthapuram, India
来源
CURRENT SCIENCE | 2023年 / 125卷 / 03期
关键词
Automated mapping; cloud platform; man-grove ecosystem; satellite data; TEXTURE ANALYSIS; VEGETATION; FORESTS; CLASSIFICATION; ECOSYSTEMS; INDEX;
D O I
10.18520/cs/v125/i3/299-308
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study on the automatic assessment of mangroves uses geometric, textural parameters and vegetation indices derived from Landsat 8 images utilizing the Google Earth Engine. The extent of Indian mangroves is estimated as 5581 sq. km for 2019, with an overall accuracy (OA) of 86% and kappa coefficient (k) of 0.77. Among the five regions studied, maximum OA was obtained for Mumbai (94%; k = 0.89) and minimum for Godavari (81.625%; k = 0.66). Such automated mapping will benefit effective mangrove monitoring and management with a near real-time accurate estimation of mangroves.
引用
收藏
页码:299 / 308
页数:10
相关论文
共 50 条
  • [31] Remote sensing techniques via Google Earth Engine for land degradation assessment in the Brazilian semiarid region, Brazil
    da Silva, Marcos Vinicius
    Pandorfi, Heliton
    de Oliveira-Junior, Jose Francisco
    da Silva, Jhon Lennon Bezerra
    de Almeida, Gledson Luiz Pontes
    Montenegro, Abelardo Antonio de Assuncao
    Mesquita, Marcio
    Ferreira, Maria Beatriz
    Santana, Taize Calvacante
    Marinho, Gabriel Thales Barboza
    da Costa, Adriana Rodolfo
    Giongo, Pedro Rogerio
    JOURNAL OF SOUTH AMERICAN EARTH SCIENCES, 2022, 120
  • [32] Automated Inundation Mapping Over Large Areas Using Landsat Data and Google Earth Engine
    Inman, Victoria L.
    Lyons, Mitchell B.
    REMOTE SENSING, 2020, 12 (08)
  • [33] Identification of Winter Wheat by Integrating Active and Passive Remote Sensing Data Based on Google Earth Engine Platform
    Ma Z.
    Liu C.
    Xue H.
    Li J.
    Fang X.
    Zhou J.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2021, 52 (09): : 195 - 205
  • [34] A Google Earth Engine Approach for Wildfire Susceptibility Prediction Fusion with Remote Sensing Data of Different Spatial Resolutions
    Tavakkoli Piralilou, Sepideh
    Einali, Golzar
    Ghorbanzadeh, Omid
    Nachappa, Thimmaiah Gudiyangada
    Gholamnia, Khalil
    Blaschke, Thomas
    Ghamisi, Pedram
    REMOTE SENSING, 2022, 14 (03)
  • [35] Leveraging the Google Earth Engine for Drought Assessment Using Global Soil Moisture Data
    Sazib, Nazmus
    Mladenova, Iliana
    Bolten, John
    REMOTE SENSING, 2018, 10 (08)
  • [36] Validation of Random Forest Algorithm to Monitor Land Cover Classification and Change Detection using Remote Sensing Data in Google Earth Engine
    Mangkhaseum, Sackdavong
    Hanazawa, Akitoshi
    INTERNATIONAL WORKSHOP ON ADVANCED IMAGING TECHNOLOGY (IWAIT) 2022, 2022, 12177
  • [37] Monitoring Forest Change in the Amazon Using Multi-Temporal Remote Sensing Data and Machine Learning Classification on Google Earth Engine
    Brovelli, Maria Antonia
    Sun, Yaru
    Yordanov, Vasil
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (10)
  • [38] Temporal Monitoring and Predicting of the Abundance of Malaria Vectors Using Time Series Analysis of Remote Sensing Data through Google Earth Engine
    Youssefi, Fahimeh
    Zoej, Mohammad Javad Valadan
    Hanafi-Bojd, Ahmad Ali
    Dariane, Alireza Borhani
    Khaki, Mehdi
    Safdarinezhad, Alireza
    Ghaderpour, Ebrahim
    SENSORS, 2022, 22 (05)
  • [39] MultiRS flood mapper: a google earth engine application for water extent mapping with multimodal remote sensing and quantile-based postprocessing
    Li, Zhouyayan
    Demir, Ibrahim
    ENVIRONMENTAL MODELLING & SOFTWARE, 2024, 176
  • [40] A summary of the special issue on remote sensing of land change science with Google earth engine
    Wang, Le
    Diao, Chunyuan
    Xian, George
    Yin, Dameng
    Lu, Ying
    Zou, Shengyuan
    Erickson, Tyler A.
    REMOTE SENSING OF ENVIRONMENT, 2020, 248