Automated assessment of the extent of mangroves using multispectral satellite remote sensing data in Google Earth Engine

被引:0
|
作者
Sarkar, Rupsa [1 ]
Gnanappazham, L. [2 ]
Pandey, A. C. [1 ]
机构
[1] Cent Univ Jharkhand, Dept Geoinformat, Ranchi 835205, Jharkhand, India
[2] Indian Inst Space Sci & Technol, Thiruvananthapuram, India
来源
CURRENT SCIENCE | 2023年 / 125卷 / 03期
关键词
Automated mapping; cloud platform; man-grove ecosystem; satellite data; TEXTURE ANALYSIS; VEGETATION; FORESTS; CLASSIFICATION; ECOSYSTEMS; INDEX;
D O I
10.18520/cs/v125/i3/299-308
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study on the automatic assessment of mangroves uses geometric, textural parameters and vegetation indices derived from Landsat 8 images utilizing the Google Earth Engine. The extent of Indian mangroves is estimated as 5581 sq. km for 2019, with an overall accuracy (OA) of 86% and kappa coefficient (k) of 0.77. Among the five regions studied, maximum OA was obtained for Mumbai (94%; k = 0.89) and minimum for Godavari (81.625%; k = 0.66). Such automated mapping will benefit effective mangrove monitoring and management with a near real-time accurate estimation of mangroves.
引用
收藏
页码:299 / 308
页数:10
相关论文
共 50 条
  • [1] Rapid multispectral data sampling using Google Earth Engine
    Brooke, Sam A. S.
    D'Arcy, Mitch
    Mason, Philippa J.
    Whittaker, Alexander C.
    COMPUTERS & GEOSCIENCES, 2020, 135
  • [2] Benefits of Google Earth Engine in remote sensing
    Wang X.
    Tian J.
    Li X.
    Wang L.
    Gong H.
    Chen B.
    Li X.
    Guo J.
    National Remote Sensing Bulletin, 2022, 26 (02) : 299 - 309
  • [3] Classification and Carbon-Stock Estimation of Mangroves in Dongzhaigang Based on Multi-Source Remote Sensing Data Using Google Earth Engine
    Zhang, Ruiwen
    Fan, Jianchao
    REMOTE SENSING, 2025, 17 (06)
  • [4] Temporal analysis of the vineyard phenology from remote sensing data using Google Earth Engine
    Jesus, J.
    Santos, F.
    Gomes, A.
    Teodoro, A. C.
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XXII, 2020, 11528
  • [5] Lineament mapping using multispectral remote sensing satellite data
    Marghany, Maged
    Hashim, Mazlan
    INTERNATIONAL JOURNAL OF THE PHYSICAL SCIENCES, 2010, 5 (10): : 1501 - 1507
  • [6] Evapotranspiration determination with satellite and reanalysis data using Google Earth Engine
    Degano, Maria Florencia
    Rivas, Raul Eduardo
    Bayala, Martin Ignacio
    TECNOLOGIA Y CIENCIAS DEL AGUA, 2024, 15 (04) : 137 - 193
  • [7] Monitoring of agricultural drought in Turkey with remote sensing data by use of Google Earth Engine
    Gul, Gulay Onusluel
    PAMUKKALE UNIVERSITY JOURNAL OF ENGINEERING SCIENCES-PAMUKKALE UNIVERSITESI MUHENDISLIK BILIMLERI DERGISI, 2024, 30 (01): : 66 - 75
  • [8] Analysis of deforestation multispectral satellite data using remote sensing techniques
    Bhoyar, Dinesh B.
    Kaur, Indersheel
    Swati
    Burange, R. A.
    Kene, J. D.
    Burange, R. A.
    Mohod, K.
    Kamble, S. D.
    INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2021, 12 (05): : 630 - 635
  • [9] Monitoring and prediction of the LULC change dynamics using time series remote sensing data with Google Earth Engine
    Farhan, Muhammad
    Wu, Taixia
    Amin, Muhammad
    Tariq, Aqil
    Guluzade, Rufat
    Alzahrani, Hassan
    PHYSICS AND CHEMISTRY OF THE EARTH, 2024, 136
  • [10] Improved Forest Canopy Closure Estimation Using Multispectral Satellite Imagery within Google Earth Engine
    Xie, Bo
    Cao, Chunxiang
    Xu, Min
    Yang, Xinwei
    Duerler, Robert Shea
    Bashir, Barjeece
    Huang, Zhibin
    Wang, Kaimin
    Chen, Yiyu
    Guo, Heyi
    REMOTE SENSING, 2022, 14 (09)