A One-Dimensional Time-Fractional Damped Wave Equation with a Convection Term

被引:0
|
作者
Aldawish, Ibtisam [1 ]
Jleli, Mohamed [2 ]
Samet, Bessem [2 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh 11566, Saudi Arabia
[2] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 05期
关键词
damped wave equation; Caputo fractional derivative; convection term; nonexistence; BLOW-UP PHENOMENA; GLOBAL-SOLUTIONS; NONEXISTENCE; SYMMETRIES; REFLECTION;
D O I
10.3390/sym15051071
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate a semilinear time-fractional damped wave equation in one dimension, posed in a bounded interval. The considered equation involves a convection term and singular potentials on one extremity of the interval. A Dirichlet boundary condition depending on the time-variable is imposed. Using nonlinear capacity estimates, we establish sufficient conditions for the nonexistence of weak solutions to the considered problem. In particular, when the boundary condition is independent of time, we show the existence of a Fujita-type critical exponent.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Time Periodic Solutions to the One-Dimensional Nonlinear Wave Equation
    Ji, Shuguan
    Li, Yong
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 199 (02) : 435 - 451
  • [32] Time Periodic Solutions to the One-Dimensional Nonlinear Wave Equation
    Shuguan Ji
    Yong Li
    Archive for Rational Mechanics and Analysis, 2011, 199 : 435 - 451
  • [33] Reconstruction of a time-dependent source term in a time-fractional diffusion-wave equation
    Gong, Xuhong
    Wei, Ting
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2019, 27 (11) : 1577 - 1594
  • [34] Time and frequency domain scattering for the one-dimensional wave equation
    Browning, BL
    INVERSE PROBLEMS, 2000, 16 (05) : 1377 - 1403
  • [35] Boundary value problem for the time-fractional wave equation
    Kosmakova, M. T.
    Khamzeyeva, A. N.
    Kasymova, L. Zh.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2024, 114 (02): : 124 - 134
  • [36] Stochastic solution to a time-fractional attenuated wave equation
    Mark M. Meerschaert
    Peter Straka
    Yuzhen Zhou
    Robert J. McGough
    Nonlinear Dynamics, 2012, 70 : 1273 - 1281
  • [37] Stochastic solution to a time-fractional attenuated wave equation
    Meerschaert, Mark M.
    Straka, Peter
    Zhou, Yuzhen
    McGough, Robert J.
    NONLINEAR DYNAMICS, 2012, 70 (02) : 1273 - 1281
  • [38] Identifying a fractional order and a space source term in a time-fractional diffusion-wave equation simultaneously
    Liao, Kaifang
    Wei, Ting
    INVERSE PROBLEMS, 2019, 35 (11)
  • [39] Analytical solutions for a time-fractional axisymmetric diffusion-wave equation with a source term
    Zhang, Fangfang
    Jiang, Xiaoyun
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (03) : 1841 - 1849
  • [40] Chaos in the one-dimensional wave equation
    Solis, FJ
    Jódar, L
    Chen, B
    APPLIED MATHEMATICS LETTERS, 2005, 18 (01) : 85 - 90