REGULARIZING NEURAL RADIANCE FIELDS FROM SPARSE RGB-D INPUTS

被引:1
|
作者
Li, Qian [1 ]
Multon, Franck [1 ]
Boukhayma, Adnane [1 ]
机构
[1] Univ Rennes, INRIA, CNRS, IRISA,M2S, Rennes, France
关键词
Neural Radiance Fields; View Synthesis; Image Warping;
D O I
10.1109/ICIP49359.2023.10222706
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper aims to improve neural radiance fields (NeRF) from sparse inputs. NeRF achieves photo-realistic renderings when given dense inputs, while its' performance drops dramatically with the decrease of training views' number. Our insight is that the standard volumetric rendering of NeRF is prone to over-fitting due to the lack of overall geometry and local neighborhood information from limited inputs. To address this issue, we propose a global sampling strategy with a geometry regularization utilizing warped images as augmented pseudo-views to encourage geometry consistency across multi-views. In addition, we introduce a local patch sampling scheme with a patch-based regularization for appearance consistency. Furthermore, our method exploits depth information for explicit geometry regularization. The proposed approach outperforms existing baselines on real benchmarks DTU datasets from sparse inputs and achieves the state of art results.
引用
收藏
页码:2320 / 2324
页数:5
相关论文
共 50 条
  • [41] Modeling Hair from an RGB-D Camera
    Zhang, Meng
    Wu, Pan
    Wu, Hongzhi
    Weng, Yanlin
    Zheng, Youyi
    Zhou, Kun
    ACM TRANSACTIONS ON GRAPHICS, 2018, 37 (06):
  • [42] LiveNVS: Neural View Synthesis on Live RGB-D Streams
    Fink, Laura
    Rueckert, Darius
    Franke, Linus
    Keinert, Joachim
    Stamminger, Marc
    PROCEEDINGS OF THE SIGGRAPH ASIA 2023 CONFERENCE PAPERS, 2023,
  • [43] HumanNeRF: Efficiently Generated Human Radiance Field from Sparse Inputs
    Zhao, Fuqiang
    Yang, Wei
    Zhang, Jiakai
    Lin, Pei
    Zhang, Yingliang
    Yu, Jingyi
    Xu, Lan
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 7733 - 7743
  • [44] Effective Keyframe Extraction from RGB and RGB-D Video Sequences
    Dastjerdi, Niloufar Salehi
    Valognes, Julien
    Amer, Maria A.
    PROCEEDINGS OF THE 2017 SEVENTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA 2017), 2017,
  • [45] Neural Correlates to Automatic Behavior Estimations from RGB-D Video in Epilepsy Unit
    Gabriel, Paolo
    Doyle, Werner K.
    Devinsky, Orrin
    Friedman, Daniel
    Thesen, Thomas
    Gilja, Vikash
    2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 3402 - 3405
  • [46] Comprehension of Spatial Constraints by Neural Logic Learning from a Single RGB-D Scan
    Yan, Fujian
    Wang, Dali
    He, Hongsheng
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 9008 - 9013
  • [47] SparseGNV: Generating Novel Views of Indoor Scenes with Sparse RGB-D Images
    Cheng, Weihao
    Cao, Yan-Pei
    Shan, Ying
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 2, 2024, : 1308 - 1316
  • [48] RGB-D Scene Image Fusion Algorithm Based on Sparse Atom Fusion
    Liu Fan
    Liu Pengyuan
    Zhang Junning
    Xu Binbin
    ACTA OPTICA SINICA, 2018, 38 (01)
  • [49] Fast Visual Odometry Based Sparse Geometric Constraint for RGB-D Camera
    Guo, Ruibin
    Zhou, Dongxiang
    Peng, Keju
    Liu, Yunhui
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2019, E102D (01) : 214 - 218
  • [50] S2NeRF: Neural Radiance Fields Training with Sparse Points and Sparse Views
    Zhang, Zhihong
    Wang, Wenjun
    Qi, Dexin
    Mei, Xuesong
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2024, PT II, 2025, 15202 : 101 - 116