REGULARIZING NEURAL RADIANCE FIELDS FROM SPARSE RGB-D INPUTS

被引:1
|
作者
Li, Qian [1 ]
Multon, Franck [1 ]
Boukhayma, Adnane [1 ]
机构
[1] Univ Rennes, INRIA, CNRS, IRISA,M2S, Rennes, France
关键词
Neural Radiance Fields; View Synthesis; Image Warping;
D O I
10.1109/ICIP49359.2023.10222706
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper aims to improve neural radiance fields (NeRF) from sparse inputs. NeRF achieves photo-realistic renderings when given dense inputs, while its' performance drops dramatically with the decrease of training views' number. Our insight is that the standard volumetric rendering of NeRF is prone to over-fitting due to the lack of overall geometry and local neighborhood information from limited inputs. To address this issue, we propose a global sampling strategy with a geometry regularization utilizing warped images as augmented pseudo-views to encourage geometry consistency across multi-views. In addition, we introduce a local patch sampling scheme with a patch-based regularization for appearance consistency. Furthermore, our method exploits depth information for explicit geometry regularization. The proposed approach outperforms existing baselines on real benchmarks DTU datasets from sparse inputs and achieves the state of art results.
引用
收藏
页码:2320 / 2324
页数:5
相关论文
共 50 条
  • [1] RegNeRF: Regularizing Neural Radiance Fields for View Synthesis from Sparse Inputs
    Niemeyer, Michael
    Barron, Jonathan T.
    Mildenhall, Ben
    Sajjadi, Mehdi S. M.
    Geiger, Andreas
    Radwan, Noha
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 5470 - 5480
  • [2] Neural Radiance Fields From Sparse RGB-D Images for High-Quality View Synthesis
    Yuan, Yu-Jie
    Lai, Yu-Kun
    Huang, Yi-Hua
    Kobbelt, Leif
    Gao, Lin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (07) : 8713 - 8728
  • [3] NeRF-OR: neural radiance fields for operating room scene reconstruction from sparse-view RGB-D videos
    Gerats, Beerend G. A.
    Wolterink, Jelmer M.
    Broeders, Ivo A. M. J.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2025, 20 (01) : 147 - 156
  • [4] SimpleNeRF: Regularizing Sparse Input Neural Radiance Fields with Simpler Solutions
    Somraj, Nagabhushan
    Karanayil, Adithyan
    Soundararajan, Rajiv
    PROCEEDINGS OF THE SIGGRAPH ASIA 2023 CONFERENCE PAPERS, 2023,
  • [5] Where and How: Mitigating Confusion in Neural Radiance Fields from Sparse Inputs
    Bao, Yanqi
    Li, Yuxin
    Huo, Jing
    Ding, Tianyu
    Liang, Xinyue
    Li, Wenbin
    Gao, Yang
    arXiv, 2023,
  • [6] Where and How: Mitigating Confusion in Neural Radiance Fields from Sparse Inputs
    Bao, Yanqi
    Li, Yuxin
    Huo, Jing
    Ding, Tianyu
    Liang, Xinyue
    Li, Wenbin
    Gao, Yang
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 2180 - 2188
  • [7] Where and How: Mitigating Confusion in Neural Radiance Fields from Sparse Inputs
    Bao, Yanqi
    Li, Yuxin
    Huo, Jing
    Ding, Tianyu
    Liang, Xinyue
    Li, Wenbin
    Gao, Yang
    MM 2023 - Proceedings of the 31st ACM International Conference on Multimedia, 2023, : 2180 - 2188
  • [8] RoDyn-SLAM: Robust Dynamic Dense RGB-D SLAM With Neural Radiance Fields
    Jiang, Haochen
    Xu, Yueming
    Li, Kejie
    Feng, Jianfeng
    Zhang, Li
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (09): : 7509 - 7516
  • [9] RGB-D DSO: Direct Sparse Odometry With RGB-D Cameras for Indoor Scenes
    Yuan, Zikang
    Cheng, Ken
    Tang, Jinhui
    Yang, Xin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 4092 - 4101
  • [10] DiffusioNeRF: Regularizing Neural Radiance Fields with Denoising Diffusion Models
    Wynn, Jamie
    Turmukhambetov, Daniyar
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 4180 - 4189