Cross-Domain Automatic Modulation Classification Using Multimodal Information and Transfer Learning

被引:5
|
作者
Deng, Wen [1 ]
Xu, Qiang [1 ]
Li, Si [1 ]
Wang, Xiang [1 ]
Huang, Zhitao [1 ]
机构
[1] Natl Univ Def Technol, Coll Elect Sci & Technol, Changsha 410073, Peoples R China
基金
中国国家自然科学基金;
关键词
automatic modulation classification; multimodal information fusion; transfer learning; class difference; sample distribution difference; unsupervised partial domain adaptation; class weight weighting; entropy weighting; COGNITIVE RADIO; NEURAL-NETWORK; SYSTEMS;
D O I
10.3390/rs15153886
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Automatic modulation classification (AMC) based on deep learning (DL) is gaining increasing attention in dynamic spectrum access for 5G/6G wireless communications. However, inconsistent feature parameters between the training (source) and testing (target) data lead to performance degradation or even failure of existing DL-based AMC. The primary reason for this is the difficulty in obtaining sufficient labeled training data in the target domain. Therefore, we propose a novel cross-domain AMC algorithm based on multimodal information and transfer learning, utilizing abundant unlabeled target domain data. We achieve complementary gains by fusing multimodal information such as amplitude, phase, and spectrum, which are used to train a network. Additionally, we apply domain adversarial neural network technology from transfer learning to learn from a large number of unlabeled data samples in the target domain to address the issue of decreased accuracy in cross-domain AMC caused by differences in sampling rate, signal-to-noise ratio, and channel variations. Furthermore, we introduce class weight weighting and entropy weighting to solve the partial domain adaptation problem, considering that the target domain has fewer modulation signal classes than the source domain. Experimental results on two designed modulation datasets demonstrate improved performance gains, thus validating the effectiveness of the proposed method.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Cross-Domain Kernel Induction for Transfer Learning
    Chang, Wei-Cheng
    Wu, Yuexin
    Liu, Hanxiao
    Yang, Yiming
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 1763 - 1769
  • [32] Transfer learning in cross-domain sequential recommendation
    Xu, Zitao
    Pan, Weike
    Ming, Zhong
    INFORMATION SCIENCES, 2024, 669
  • [33] TLRec: Transfer Learning for Cross-domain Recommendation
    Chen, Leihui
    Zheng, Jianbing
    Gao, Ming
    Zhou, Aoying
    Zeng, Wei
    Chen, Hui
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG KNOWLEDGE (IEEE ICBK 2017), 2017, : 167 - 172
  • [34] Boosted Multifeature Learning for Cross-Domain Transfer
    Yang, Xiaoshan
    Zhang, Tianzhu
    Xu, Changsheng
    Yang, Ming-Hsuan
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2015, 11 (03)
  • [35] Ladder Curriculum Learning for Domain Generalization in Cross-Domain Classification
    Wang, Xiaoshun
    Luo, Sibei
    Gao, Yiming
    IEEE ACCESS, 2024, 12 : 95356 - 95367
  • [36] Assessment of operating performance using cross-domain feature transfer learning
    Zou, Xiaoyu
    Wang, Fuli
    Chang, Yuqing
    CONTROL ENGINEERING PRACTICE, 2019, 89 : 143 - 153
  • [37] Cross-domain structural damage identification using transfer learning strategy
    Liu, Yang
    Fang, Sheng-En
    ENGINEERING STRUCTURES, 2024, 311
  • [38] Learning Disentangled Representation for Multimodal Cross-Domain Sentiment Analysis
    Zhang, Yuhao
    Zhang, Ying
    Guo, Wenya
    Cai, Xiangrui
    Yuan, Xiaojie
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (10) : 7956 - 7966
  • [39] A cross-domain recommender system with consistent information transfer
    Zhang, Qian
    Wu, Dianshuang
    Lu, Jie
    Liu, Feng
    Zhang, Guangquan
    DECISION SUPPORT SYSTEMS, 2017, 104 : 49 - 63
  • [40] Cross-Domain Labeled LDA for Cross-Domain Text Classification
    Jing, Baoyu
    Lu, Chenwei
    Wang, Deqing
    Zhuang, Fuzhen
    Niu, Cheng
    2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 187 - 196