RetU-Net: An Enhanced U-Net Architecture for Retinal Lesion Segmentation

被引:2
|
作者
Sundar, Sumod [1 ]
Sumathy, S. [2 ]
机构
[1] VIT Univ, Sch Comp Sci & Engn, Vellore, Tamil Nadu, India
[2] VIT Univ, Sch Informat Technol & Engn, Vellore, Tamil Nadu, India
关键词
Segmentation; deep learning; diabetic retinopathy; medical imaging; BLOOD-VESSEL SEGMENTATION; IMAGES; EXTRACTION; NETWORK;
D O I
10.1142/S0218213023500136
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diabetic retinopathy is a predominant vision-threatening disease affecting working-aged people specifically. Timely diagnosis through early detection and prevention helps to reduce the risk of severe vision loss. Computer-aided diagnosis in retinal image analysis through Machine Learning techniques will help medical professionals perform their analysis better. Automated image processing through Convolutional Neural Networks has proven to be a promising technique, mainly in medical image segmentation. Convolutional Neural Network techniques like 3D CNN, Deep CNN and architectures like U-Net, V-Net, SegNet, and DeepMedic have outperformed medical image analysis results. However, the baseline CNN architectures struggle to retain high-quality information at the output and thus affect the performance. This work focuses on addressing the issue of translational variance and overfitting scenarios of U-Net architecture by experimenting with adaptable window sizes, pretrained weights and linear interpolation technique. A novel U-Net based architecture called RetU-Net that segments abnormal retinopathy lesion structures by retaining higher-level feature is proposed. The experiments are conducted using Indian Diabetic Retinopathy Image Dataset provided in "Diabetic Retinopathy: Segmentation and Grading Challenge" initially. The results have been compared with other state-of-art CNN architectures. Further evaluation is carried out on public datasets: STARE and DRIVE, and the performance is compared with U-Net based architectures used for retinal image segmentation. The proposed approach is efficient in terms of precision, sensitivity, specificity and accuracy. It received accuracy scores of 0.9612, 0.9712 while experimenting with STARE and DRIVE datasets respectively.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] U-Net with Attention Mechanism for Retinal Vessel Segmentation
    Si, Ze
    Fu, Dongmei
    Li, Jiahao
    IMAGE AND GRAPHICS, ICIG 2019, PT II, 2019, 11902 : 668 - 677
  • [22] A Global and Local Enhanced Residual U-Net for Accurate Retinal Vessel Segmentation
    Lian, Sheng
    Li, Lei
    Lian, Guiren
    Xiao, Xiao
    Luo, Zhiming
    Li, Shaozi
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 18 (03) : 852 - 862
  • [23] AnImproved Method for Retinal Vascular Segmentation in U-Net
    Xue Wenxuan
    Liu Jianxia
    Liu Ran
    Yuan Xiaohui
    ACTA OPTICA SINICA, 2020, 40 (12)
  • [24] Feature pyramid U-Net for retinal vessel segmentation
    Liu, Yi-Peng
    Rui, Xue
    Li, Zhanqing
    Zeng, Dongxu
    Li, Jing
    Chen, Peng
    Liang, Ronghua
    IET IMAGE PROCESSING, 2021, 15 (08) : 1733 - 1744
  • [25] Retinal Vessel Segmentation with Differentiated U-Net Network
    Arpaci, Saadet Aytac
    Varli, Songul
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [26] Slim U-Net: Efficient Anatomical Feature Preserving U-net Architecture for Ultrasound Image Segmentation
    Raina, Deepak
    Verma, Kashish
    Chandrashekhara, Sheragaru Hanumanthappa
    Saha, Subir Kumar
    2022 9TH INTERNATIONAL CONFERENCE ON BIOMEDICAL AND BIOINFORMATICS ENGINEERING, ICBBE 2022, 2022, : 41 - 48
  • [27] A Convolutional Neural Network for Skin Lesion Segmentation Using Double U-Net Architecture
    Abid, Iqra
    Almakdi, Sultan
    Rahman, Hameedur
    Almulihi, Ahmed
    Alqahtani, Ali
    Rajab, Khairan
    Alqhatani, Abdulmajeed
    Shaikh, Asadullah
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 33 (03): : 1407 - 1421
  • [28] Skin lesion segmentation using convolutional neural networks with improved U-Net architecture
    Iranpoor, Rasool
    Mahboob, Amir Soltany
    Shahbandegan, Shakiba
    Baniasadi, Nasrin
    2020 6TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS), 2020,
  • [29] Development of an enhanced U-Net model for brain tumor segmentation with optimized architecture
    Kumar, G. Mahesh
    Parthasarathy, Eswaran
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 81
  • [30] Semantic Segmentation of Hippocampal Subregions With U-Net Architecture
    Nasser, Soraya
    Naoui, Moulkheir
    Belalem, Ghalem
    Mahmoudi, Said
    INTERNATIONAL JOURNAL OF E-HEALTH AND MEDICAL COMMUNICATIONS, 2021, 12 (06)