Intra-subject class-incremental deep learning approach for EEG-based imagined speech recognition

被引:12
|
作者
Garcia-Salinas, Jesus S. [1 ,2 ]
Torres-Garcia, Alejandro A. [1 ]
Reyes-Garcia, Carlos A. [1 ]
Villasenor-Pineda, Luis [1 ]
机构
[1] Inst Nacl Astrofis Opt & Electr, Biosignals Proc & Med Comp Lab, Luis Enrique Erro 1, Puebla, Mexico
[2] Gdansk Univ Technol, Multimedia Syst Dept, Brain & Mind Electrophysiol Lab, Fac Elect Telecommun & Informat, Gdansk, Poland
关键词
EEG; BCI; Imagined speech; Neural networks; Incremental learning; INNER SPEECH; BRAIN-AREAS;
D O I
10.1016/j.bspc.2022.104433
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Brain-computer interfaces (BCIs) aim to decode brain signals and transform them into commands for device operation. The present study aimed to decode the brain activity during imagined speech. The BCI must identify imagined words within a given vocabulary and thus perform the requested action. A possible scenario when using this approach is the gradual addition of new words to the vocabulary using incremental learning methods. An issue with incremental learning methods is degradation of the decoding capacity of the original model when new classes are added. In this study, a class-incremental neural network method is proposed to increase the vocabulary of imagined speech. The results indicate a stable model that did not degenerate when a new word was integrated. The proposed method allows for the inclusion of newly imagined words without a significant loss of total accuracy for the two datasets.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] An Effective Hybrid Deep Learning Model for Single-Channel EEG-Based Subject-Independent Drowsiness Recognition
    Reddy, Y. Rama Muni
    Muralidhar, P.
    Srinivas, M.
    BRAIN TOPOGRAPHY, 2024, 37 (01) : 1 - 18
  • [32] Affective EEG-Based Person Identification Using the Deep Learning Approach
    Wilaiprasitporn, Theerawit
    Ditthapron, Apiwat
    Matchaparn, Karis
    Tongbuasirilai, Tanaboon
    Banluesombatkul, Nannapas
    Chuangsuwanich, Ekapol
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2020, 12 (03) : 486 - 496
  • [33] TorchEEG EMO : A deep learning toolbox towards EEG-based emotion recognition
    Zhang, Zhi
    Zhong, Sheng-hua
    Liu, Yan
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [34] Deep Learning Methods for Multi-Channel EEG-Based Emotion Recognition
    Olamat, Ali
    Ozel, Pinar
    Atasever, Sema
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2022, 32 (05)
  • [35] A Fuzzy Ensemble-Based Deep learning Model for EEG-Based Emotion Recognition
    Dhara, Trishita
    Singh, Pawan Kumar
    Mahmud, Mufti
    COGNITIVE COMPUTATION, 2024, 16 (03) : 1364 - 1378
  • [36] Transformer-based ensemble deep learning model for EEG-based emotion recognition
    Xiaopeng Si
    Dong Huang
    Yulin Sun
    Shudi Huang
    He Huang
    Dong Ming
    Brain Science Advances, 2023, 9 (03) : 210 - 223
  • [37] Spatial-Temporal Constraint Learning for Cross-Subject EEG-Based Emotion Recognition
    Li, Wei
    Hou, Bowen
    Shao, Shitong
    Huan, Wei
    Tian, Ye
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [38] Generalized Contrastive Partial Label Learning for Cross-Subject EEG-Based Emotion Recognition
    Li, Wei
    Fan, Lingmin
    Shao, Shitong
    Song, Aiguo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 11
  • [39] Deep-Learning-Based BCI for Automatic Imagined Speech Recognition Using SPWVD
    Kamble, Ashwin
    Ghare, Pradnya H.
    Kumar, Vinay
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [40] An efficient deep learning approach for automatic speech recognition using EEG signals
    Chinta, Babu
    Pampana, Madhuri
    Moorthi, M.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2025,