Conductivity in Thin Films of Transition Metal Coordination Complexes

被引:1
|
作者
Spinelli, Giovanni [1 ]
Morritt, George H. [2 ]
Pavone, Michele [3 ]
Probert, Michael R. [1 ]
Waddel, Paul G. [1 ]
Edvinsson, Tomas [4 ]
Munoz-Garcia, Ana Belen [5 ]
Freitag, Marina [1 ]
机构
[1] Newcastle Univ, Sch Nat & Environm Sci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[2] Newcastle Univ, Sch Math Stat & Phys, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[3] Univ Naples Federico II, Dept Chem Sci, I-80126 Naples, Italy
[4] Uppsala Univ, Dept Mat Sci & Engn, Div Solid State Phys, SE-75103 Uppsala, Sweden
[5] Univ Naples Federico II, Dept Phys Ettore Pancini, I-80126 Naples, Italy
基金
英国工程与自然科学研究理事会;
关键词
charge transfer; electrical conductivity; energy materials; coordination complexes; copper complexes; charge transfer materials; salts; POLYMERS; PERFORMANCE; SALTS;
D O I
10.1021/acsaem.2c02999
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two coordination complexes have been made by combining the dithiolene complexes [M(mnt)(2)](2-) (mnt = maleonitriledithiolate; M = Ni2+ or Cu2+) as anion, with the copper(II) coordination complex [Cu(Stetra)] (Stetra = 6,6 ' - bis(4,5-dihydrothiazol-2-yl)-2,2 ' -bipyri-dine) as cation. The variation of the metal centers leads to a dramatic change in the conductivity of the materials, with the M = Cu2+ variant (Cu-Cu) displaying semiconductor behavior with a conductivity of approximately 2.5 x 10(-8) S cm(-1), while the M = Ni2+ variant (Ni-Cu) displayed no observable conductivity. Computational studies found Cu-Cu enables a minimization of reorganization energy losses and, as a result, a lower barrier to the charge transfer process, resulting in the reported higher conductivity.
引用
收藏
页码:2122 / 2127
页数:6
相关论文
共 50 条
  • [31] Effect of Group 6 Transition Metal Coordination on the Conductivity of Graphite Nanoplatelets
    Tian, Xiaojuan
    Sarkar, Santanu
    Moser, Matthew L.
    Wang, Feihu
    Pekker, Aron
    Bekyarova, Elena
    Itkis, Mikhail E.
    Haddon, Robert C.
    MATERIALS LETTERS, 2012, 80 : 171 - 174
  • [32] COORDINATION CHEMISTRY OF UNSATURATED TRANSITION METAL-SILYL COMPLEXES
    HEYN, RH
    RODDICK, DM
    TILLEY, TD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1989, 197 : 309 - INOR
  • [33] COORDINATION IN TRANSITION-METAL COMPLEXES STUDIED BY INFRARED SPECTROSCOPY
    MASLENNI.IS
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY,USSR, 1970, 44 (10): : 1422 - &
  • [34] Coordination complexes and applications of transition metal sulfide and selenide halides
    Greenacre, Victoria K.
    Levason, William
    Reid, Gillian
    Smith, Danielle E.
    COORDINATION CHEMISTRY REVIEWS, 2020, 424
  • [35] Electrostatic and covalent contributions in the coordination bonds of transition metal complexes
    Xiong, Zhenhai
    Liu, Yang
    Sun, Huai
    JOURNAL OF PHYSICAL CHEMISTRY A, 2008, 112 (11): : 2469 - 2476
  • [36] The coordination of azepine to transition-metal complexes: A DFT analysis
    Farah, Sara
    Korichi, Hanane
    Zendaoui, Saber-Mustapha
    Saillard, Jean-Yves
    Zouchoune, Bachir
    INORGANICA CHIMICA ACTA, 2009, 362 (10) : 3541 - 3546
  • [37] Coordination non-innocence in transition metal stibine complexes
    Jones, James S.
    Ke, Iou-Sheng
    Gabbai, Francois P.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [38] In situ nanostructured polyurethanes with immobilized transition metal coordination complexes
    Nizelskii, Yurii
    Kozak, Nataly
    JOURNAL OF MACROMOLECULAR SCIENCE PART B-PHYSICS, 2007, 46 (01): : 97 - 110
  • [39] Coordination effects of nitroxide radicals in transition metal and lanthanide complexes
    Kaizaki, Sumio
    COORDINATION CHEMISTRY REVIEWS, 2006, 250 (13-14) : 1804 - 1818
  • [40] STRUCTURAL ASPECTS OF THIOPHENE COORDINATION IN TRANSITION-METAL COMPLEXES
    ANGELICI, RJ
    COORDINATION CHEMISTRY REVIEWS, 1990, 105 : 61 - 76