FSOU-Net: Feature supplement and optimization U-Net for 2D medical image segmentation

被引:2
|
作者
Wang, Yongtao [1 ,2 ]
Tian, Shengwei [1 ,2 ]
Yu, Long [3 ]
Wu, Weidong [4 ,5 ]
Zhang, Dezhi [4 ]
Wang, Junwen [1 ,2 ]
Cheng, Junlong [6 ]
机构
[1] Xinjiang Univ, Coll Software Engn, Urumqi, Xinjiang, Peoples R China
[2] Xinjiang Univ, Key Lab Software Engn Technol, Urumqi, Xinjiang, Peoples R China
[3] Xinjiang Univ, Coll Informat Sci & Engn, Urumqi, Xinjiang, Peoples R China
[4] Peoples Hosp Xinjiang Uygur Autonomous Reg, Urumqi, Xinjiang, Peoples R China
[5] China Xinjiang Key Lab Dermatol Res XJYS1707, Urumqi, Xinjiang, Peoples R China
[6] Sichuan Univ, Coll Comp Sci, Chengdu, Sichuan, Peoples R China
关键词
Deep learning algorithm; medical image analysis; semantic segmentation; multi-scale; convolutional neural networks; OPTIC DISC;
D O I
10.3233/THC-220174
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
BACKGROUND: The results of medical image segmentation can provide reliable evidence for clinical diagnosis and treatment. The U-Net proposed previously has been widely used in the field of medical image segmentation. Its encoder extracts semantic features of different scales at different stages, but does not carry out special processing for semantic features of each scale. OBJECTIVE: To improve the feature expression ability and segmentation performance of U-Net, we proposed a feature supplement and optimization U-Net (FSOU-Net). METHODS: First, we put forward the view that semantic features of different scales should be treated differently. Based on this view, we classify the semantic features automatically extracted by encoders into two categories: shallow semantic features and deep semantic features. Then, we propose the shallow feature supplement module (SFSM), which obtains fine-grained semantic features through up-sampling to supplement the shallow semantic information. Finally, we propose the deep feature optimization module (DFOM), which uses the expansive convolution of different receptive fields to obtain multi-scale features and then performs multi-scale feature fusion to optimize the deep semantic information. RESULTS: The proposed model is experimented on three medical image segmentation public datasets, and the experimental results prove the correctness of the proposed idea. The segmentation performance of the model is higher than the advanced models for medical image segmentation. Compared with baseline network U-NET, the main index of Dice index is 0.75% higher on the RITE dataset, 2.3% higher on the Kvasir-SEG dataset, and 0.24% higher on the GlaS dataset. CONCLUSIONS: The proposed method can greatly improve the feature representation ability and segmentation performance of the model.
引用
收藏
页码:181 / 195
页数:15
相关论文
共 50 条
  • [41] LFU-Net: A Lightweight U-Net with Full Skip Connections for Medical Image Segmentation
    Deng, Yunjiao
    Wang, Hui
    Hou, Yulei
    Liang, Shunpan
    Zeng, Daxing
    CURRENT MEDICAL IMAGING, 2023, 19 (04) : 347 - 360
  • [42] Application of U-Net and Optimized Clustering in Medical Image Segmentation: A Review
    Shao, Jiaqi
    Chen, Shuwen
    Zhou, Jin
    Zhu, Huisheng
    Wang, Ziyi
    Brown, Mackenzie
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 136 (03): : 2173 - 2219
  • [43] Medical image segmentation based on state transition algorithm and U-net
    Zhou, Xiaojun
    Geng, Chuanyu
    Yang, Chunhua
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2023, 54 (04): : 1358 - 1369
  • [44] Content-adaptive U-Net Architecture for Medical Image Segmentation
    Mostayed, Ahmed
    Wee, William G.
    Zhou, Xuefu
    2019 6TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI 2019), 2019, : 698 - 702
  • [45] Shape-intensity-guided U-net for medical image segmentation
    Dong, Wenhui
    Du, Bo
    Xu, Yongchao
    NEUROCOMPUTING, 2024, 610
  • [46] Recurrent Residual U-Net with EfficientNet Encoder for Medical Image Segmentation
    Siddique, Nahian
    Paheding, Sidike
    Alom, Md Zahangir
    Devabhaktuni, Vijaya
    PATTERN RECOGNITION AND TRACKING XXXII, 2021, 11735
  • [47] Biomedical Image Segmentation with Modified U-Net
    Tatli, Umut
    Budak, Cafer
    TRAITEMENT DU SIGNAL, 2023, 40 (02) : 523 - 531
  • [48] Feedback U-net for Cell Image Segmentation
    Shibuya, Eisuke
    Hotta, Kazuhiro
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 4195 - 4203
  • [49] Hybrid dilation and attention residual U-Net for medical image segmentation
    Wang, Zekun
    Zou, Yanni
    Liu, Peter X.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 134
  • [50] SACNet: Shuffling atrous convolutional U-Net for medical image segmentation
    Wang, Shaofan
    Liu, Yukun
    Sun, Yanfeng
    Yin, Baocai
    IET IMAGE PROCESSING, 2023, 17 (04) : 1236 - 1252