LSTM and CNN application for core-collapse supernova search in gravitational wave real data

被引:12
|
作者
Iess, Alberto [1 ]
Cuoco, Elena [1 ,2 ]
Morawski, Filip [3 ,4 ]
Nicolaou, Constantina [5 ]
Lahav, Ofer [5 ]
机构
[1] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy
[2] European Gravitat Observ EGO, I-56021 Cascina, Pisa, Italy
[3] Polish Acad Sci, Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland
[4] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow G12 8QQ, Scotland
[5] UCL, Dept Phys & Astron, Gower St, London, England
基金
美国国家科学基金会; 英国科学技术设施理事会;
关键词
gravitational waves; methods: data analysis; supernovae: general; NEURAL-NETWORKS; HYDRODYNAMICS; SIGNALS; NOISE;
D O I
10.1051/0004-6361/202142525
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Core-collapse supernovae (CCSNe) are expected to emit gravitational wave signals that could be detected by current and future generation interferometers within the Milky Way and nearby galaxies. The stochastic nature of the signal arising from CCSNe requires alternative detection methods to matched filtering. Aims. We aim to show the potential of machine learning (ML) for multi-label classification of different CCSNe simulated signals and noise transients using real data. We compared the performance of 1D and 2D convolutional neural networks (CNNs) on single and multiple detector data. For the first time, we tested multi-label classification also with long short-term memory (LSTM) networks. Methods. We applied a search and classification procedure for CCSNe signals, using an event trigger generator, the Wavelet Detection Filter (WDF), coupled with ML. We used time series and time-frequency representations of the data as inputs to the ML models. To compute classification accuracies, we simultaneously injected, at detectable distance of 1 kpc, CCSN waveforms, obtained from recent hydrodynamical simulations of neutrino-driven core-collapse, onto interferometer noise from the O2 LIGO and Virgo science run. Results. We compared the performance of the three models on single detector data. We then merged the output of the models for single detector classification of noise and astrophysical transients, obtaining overall accuracies for LIGO (similar to 99%) and (similar to 80%) for Virgo. We extended our analysis to the multi-detector case using triggers coincident among the three ITFs and achieved an accuracy of similar to 98%.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Modeling core-collapse supernovae gravitational-wave memory in laser interferometric data
    Richardson, Colter J.
    Zanolin, Michele
    Andresen, Haakon
    Szczepanczyk, Marek J.
    Gill, Kiranjyot
    Wongwathanarat, Annop
    PHYSICAL REVIEW D, 2022, 105 (10)
  • [42] Real-time monitoring for the next core-collapse supernova in JUNO
    Abusleme, Angel
    Adam, Thomas
    Ahmad, Shakeel
    Ahmed, Rizwan
    Aiello, Sebastiano
    Akram, Muhammad
    Aleem, Abid
    An, Fengpeng
    An, Qi
    Andronico, Giuseppe
    Anfimov, Nikolay
    Antonelli, Vito
    Antoshkina, Tatiana
    Asavapibhop, Burin
    de Andre, Joao Pedro Athayde Marcondes
    Auguste, Didier
    Bai, Weidong
    Balashov, Nikita
    Baldini, Wander
    Barresi, Andrea
    Basilico, Davide
    Baussan, Eric
    Bellato, Marco
    Beretta, Marco
    Bergnoli, Antonio
    Bick, Daniel
    Bieger, Lukas
    Biktemerova, Svetlana
    Birkenfeld, Thilo
    Morton-Blake, Iwan
    Blum, David
    Blyth, Simon
    Bolshakova, Anastasia
    Bongrand, Mathieu
    Bordereau, Clement
    Breton, Dominique
    Brigatti, Augusto
    Brugnera, Riccardo
    Bruno, Riccardo
    Budano, Antonio
    Busto, Jose
    Cabrera, Anatael
    Caccianiga, Barbara
    Cai, Hao
    Cai, Xiao
    Cai, Yanke
    Cai, Zhiyan
    Callier, Stephane
    Cammi, Antonio
    Campeny, Agustin
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (01):
  • [43] Gravitational wave signals from 2D core-collapse supernova models with rotation and magnetic fields
    Jardine, Rylan
    Powell, Jade
    Muller, Bernhard
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 510 (04) : 5535 - 5552
  • [44] RES-NOVA sensitivity to core-collapse and failed core-collapse supernova neutrinos
    Pattavina, L.
    Iachellini, N. Ferreiro
    Pagnanini, L.
    Canonica, L.
    Celi, E.
    Clemenza, M.
    Ferroni, F.
    Fiorini, E.
    Garai, A.
    Gironi, L.
    Mancuso, M.
    Nisi, S.
    Petricca, F.
    Pirro, S.
    Pozzi, S.
    Puiu, A.
    Rothe, J.
    Schoenert, S.
    Shtembari, L.
    Strauss, R.
    Wagner, V
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (10):
  • [45] Core-collapse supernova enrichment in the core of the Virgo cluster
    Million, E. T.
    Werner, N.
    Simionescu, A.
    Allen, S. W.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 418 (04) : 2744 - 2753
  • [46] Search for neutrinos from core-collapse supernova from the global network of detectors
    Habig, Alec
    TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS (TAUP2009), 2010, 203
  • [47] Core-collapse supernovae and gravitational waves
    Cardall, CY
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2005, 138 : 436 - 438
  • [48] Proposed searches for candidate sources of gravitational waves in a nearby core-collapse supernova survey
    Heo, Jeong-Eun
    Yoon, Soyoung
    Lee, Dae-Sub
    Kong, In-taek
    Lee, Sang-Hoon
    van Putten, Maurice H. P. M.
    Della Valle, Massimo
    NEW ASTRONOMY, 2016, 42 : 24 - 28
  • [49] Waveform reconstruction of core-collapse supernova gravitational waves with ensemble empirical mode decomposition
    Yuan, Yong
    Fan, Xi-Long
    Lu, Hou-Jun
    Sun, Yang-Yi
    Lin, Kai
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 529 (04) : 3235 - 3243
  • [50] Gravitational waves and core-collapse supernovae
    Bisnovatyi-Kogan, G. S.
    Moiseenko, S. G.
    PHYSICS-USPEKHI, 2017, 60 (08) : 843 - 850