Model-Agnostic Zero-Shot Intent Detection via Contrastive Transfer Learning

被引:2
|
作者
Maqbool, M. H. [1 ]
Fereidouni, Moghis [2 ]
Siddique, A. B. [2 ]
Foroosh, Hassan [1 ]
机构
[1] Univ Cent Florida, Orlando, FL USA
[2] Univ Kentucky, Lexington, KY 40506 USA
关键词
Intent detection; zero-shot learning; dialog systems;
D O I
10.1142/S1793351X24410010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An intent detector is a central component of any task-oriented conversational system. The goal of the intent detector is to identify the user's goal by classifying natural language utterances. In recent years, research has focused on supervised intent detection models. Supervised learning approaches cannot accommodate unseen intents, which may emerge after the system has been deployed- the more practically relevant setting, known as zero-shot intent detection. The existing zero-shot learning approaches split a dataset into seen and unseen intents for training and evaluations without taking the sensitivity of the data collection process into account. That is, humans tend to use repeated vocabulary and compose sentences with similar compositional structures. We argue that the source-to-target relationship learning objective of zero-shot approaches under typical data split procedure renders the zero-shot models prone to misclassifications when target intents are divergent from source intents. To this end, we propose INTEND, a zero-shot INTENt Detection methodology that leverages contrastive transfer learning and employs a zero-shot learning paradigm in its true sense. First, in contrast to partitioning the training and testing sets from the same dataset, we demonstrate that selecting training and testing sets from two different datasets allows for rigorous zero-shot intent detection evaluations. Second, our employed contrastive learning goal is model-agnostic and encourages the system to focus on learning a generic similarity function, rather than on commonly encountered patterns in the training set. We conduct extensive experimental evaluations using a range of transformer models on four public intent detection datasets for up to 150 unseen classes. Our experimental results show that INTEND consistently outperforms state-of-the-art zero-shot techniques by a substantial margin. Furthermore, our approach achieves significantly better performance than few-shot intent detection models.
引用
收藏
页码:5 / 24
页数:20
相关论文
共 50 条
  • [21] Zero-shot User Intent Detection via Capsule Neural Networks
    Xia, Congying
    Zhang, Chenwei
    Yan, Xiaohui
    Chang, Yi
    Yu, Philip S.
    2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 3090 - 3099
  • [22] Boosting Zero-Shot Learning via Contrastive Optimization of Attribute Representations
    Du, Yu
    Shi, Miaojing
    Wei, Fangyun
    Li, Guoqi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16706 - 16719
  • [23] JointCL: A Joint Contrastive Learning Framework for Zero-Shot Stance Detection
    Liang, Bin
    Zhu, Qinglin
    Li, Xiang
    Yang, Min
    Gui, Lin
    He, Yulan
    Xu, Ruifeng
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 81 - 91
  • [24] Zero-shot Learning via Recurrent Knowledge Transfer
    Zhao, Bo
    Sun, Xinwei
    Hong, Xiaopeng
    Yao, Yuan
    Wang, Yizhou
    2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2019, : 1308 - 1317
  • [25] Few-Shot Bearing Anomaly Detection via Model-Agnostic Meta-Learning
    Zhang, Shen
    Ye, Fei
    Wang, Bingnan
    Habetler, Thomas G.
    2020 23RD INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS), 2020, : 1341 - 1346
  • [26] Rumour Detection via Zero-Shot Cross-Lingual Transfer Learning
    Tian, Lin
    Zhang, Xiuzhen
    Lau, Jey Han
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, 2021, 12975 : 603 - 618
  • [27] Semantic Contrastive Embedding for Generalized Zero-Shot Learning
    Zongyan Han
    Zhenyong Fu
    Shuo Chen
    Jian Yang
    International Journal of Computer Vision, 2022, 130 : 2606 - 2622
  • [28] A Contrastive Method for Continual Generalized Zero-Shot Learning
    Liang, Chen
    Fan, Wentao
    Liu, Xin
    Peng, Shu-Juan
    ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE. THEORY AND APPLICATIONS, IEA/AIE 2023, PT I, 2023, 13925 : 365 - 376
  • [29] Transferable Contrastive Network for Generalized Zero-Shot Learning
    Jiang, Huajie
    Wang, Ruiping
    Shan, Shiguang
    Chen, Xilin
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9764 - 9773
  • [30] Semantic Contrastive Embedding for Generalized Zero-Shot Learning
    Han, Zongyan
    Fu, Zhenyong
    Chen, Shuo
    Yang, Jian
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (11) : 2606 - 2622