langevitour: Smooth Interactive Touring of High Dimensions, Demonstrated with scRNA-Seq Data

被引:0
|
作者
Harrison, Paul [1 ]
机构
[1] Monash Univ, Monash Genom & Bioinformat Platform, 15 Innovation Walk,Clayton Campus, Clayton, Vic 3800, Australia
来源
R JOURNAL | 2023年 / 15卷 / 02期
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
langevitour displays interactive animated 2D projections of high-dimensional datasets. Langevin Dynamics is used to produce a smooth path of projections. Projections are initially explored at random. A "guide" can be activated to look for an informative projection, or variables can be manually positioned. After a projection of particular interest has been found, continuing small motions provide a channel of visual information not present in a static scatter plot. langevitour is implemented in Javascript, allowing for a high frame rate and responsive interaction, and can be used directly from the R environment or embedded in HTML documents produced using R. Single cell RNA-sequencing (scRNA-Seq) data is used to demonstrate the widget. langevitour's linear projections provide a less distorted view of this data than commonly used non-linear dimensionality reductions such as UMAP.
引用
收藏
页码:206 / 219
页数:14
相关论文
共 50 条
  • [21] Cell lineage inference from SNP and scRNA-Seq data
    Ding, Jun
    Lin, Chieh
    Bar-Joseph, Ziv
    NUCLEIC ACIDS RESEARCH, 2019, 47 (10)
  • [22] SPARSim single cell: a count data simulator for scRNA-seq data
    Baruzzo, Giacomo
    Patuzzi, Ilaria
    Di Camillo, Barbara
    BIOINFORMATICS, 2020, 36 (05) : 1468 - 1475
  • [23] FRMC: a fast and robust method for the imputation of scRNA-seq data
    Wu, Honglong
    Wang, Xuebin
    Chu, Mengtian
    Xiang, Ruizhi
    Zhou, Ke
    RNA BIOLOGY, 2021, 18 : 172 - 181
  • [24] Deep embedded clustering with multiple objectives on scRNA-seq data
    Li, Xiangtao
    Zhang, Shixiong
    Wong, Ka-Chun
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [25] Detection of differentially abundant cell subpopulations in scRNA-seq data
    Zhao, Jun
    Jaffe, Ariel
    Li, Henry
    Lindenbaum, Ofir
    Sefik, Esen
    Jackson, Ruaidhri
    Cheng, Xiuyuan
    Flavell, Richard A.
    Kluger, Yuval
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (22)
  • [26] CellDepot: A Unified Repository for scRNA-seq Data and Visual Exploration
    Lin, Dongdong
    Chen, Yirui
    Negi, Soumya
    Cheng, Derrick
    Ouyang, Zhengyu
    Sexton, David
    Li, Kejie
    Zhang, Baohong
    JOURNAL OF MOLECULAR BIOLOGY, 2022, 434 (11)
  • [27] miRSCAPE - inferring miRNA expression from scRNA-seq data
    Olgun, Gulden
    Gopalan, Vishaka
    Hannenhalli, Sridhar
    ISCIENCE, 2022, 25 (09)
  • [28] scRNA-seq data analysis method to improve analysis performance
    Lu, Junru
    Sheng, Yuqi
    Qian, Weiheng
    Pan, Min
    Zhao, Xiangwei
    Ge, Qinyu
    IET NANOBIOTECHNOLOGY, 2023, 17 (03) : 246 - 256
  • [29] Interpretable Factors in scRNA-seq Data with Disentangled Generative Models
    Mao, Haiyi
    Broerman, Matthew J.
    Benos, Panayiotis, V
    2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2020), 2020, : 85 - 88
  • [30] Exploring Hierarchical Structures of Cell Types in scRNA-seq Data
    Zhai, Haojie
    Ye, Yusen
    Hu, Yuxuan
    Wang, Lanying
    Gao, Lin
    BIOINFORMATICS RESEARCH AND APPLICATIONS, PT II, ISBRA 2024, 2024, 14955 : 1 - 13