langevitour: Smooth Interactive Touring of High Dimensions, Demonstrated with scRNA-Seq Data

被引:0
|
作者
Harrison, Paul [1 ]
机构
[1] Monash Univ, Monash Genom & Bioinformat Platform, 15 Innovation Walk,Clayton Campus, Clayton, Vic 3800, Australia
来源
R JOURNAL | 2023年 / 15卷 / 02期
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
langevitour displays interactive animated 2D projections of high-dimensional datasets. Langevin Dynamics is used to produce a smooth path of projections. Projections are initially explored at random. A "guide" can be activated to look for an informative projection, or variables can be manually positioned. After a projection of particular interest has been found, continuing small motions provide a channel of visual information not present in a static scatter plot. langevitour is implemented in Javascript, allowing for a high frame rate and responsive interaction, and can be used directly from the R environment or embedded in HTML documents produced using R. Single cell RNA-sequencing (scRNA-Seq) data is used to demonstrate the widget. langevitour's linear projections provide a less distorted view of this data than commonly used non-linear dimensionality reductions such as UMAP.
引用
收藏
页码:206 / 219
页数:14
相关论文
共 50 条
  • [1] Cerebro: interactive visualization of scRNA-seq data
    Hillje, Roman
    Pelicci, Pier Giuseppe
    Luzi, Lucilla
    BIOINFORMATICS, 2020, 36 (07) : 2311 - 2313
  • [2] MHA, an interactive website for scRNA-seq data of male genitourinary development and disease
    Zhao, LiangYu
    Zhao, YiFan
    Yao, ChenCheng
    Dai, YingBo
    Li, Zheng
    Tang, YuXin
    ANDROLOGY, 2023, 11 (06) : 1157 - 1162
  • [3] Computational approaches for interpreting scRNA-seq data
    Rostom, Raghd
    Svensson, Valentine
    Teichmann, Sarah A.
    Kar, Gozde
    FEBS LETTERS, 2017, 591 (15) : 2213 - 2225
  • [4] Domain adaptation for supervised integration of scRNA-seq data
    Sun, Yutong
    Qiu, Peng
    COMMUNICATIONS BIOLOGY, 2023, 6 (01)
  • [5] Recursive Clustering of Cellular Diversity in scRNA-Seq Data
    Squires, Michael
    Qiu, Peng
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2025,
  • [6] Comparison of scRNA-seq data analysis method combinations
    Xu, Li
    Xue, Tong
    Ding, Weiyue
    Shen, Linshan
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2022, 21 (06) : 433 - 440
  • [7] Predicting lung aging using scRNA-Seq data
    Song, Qi
    Singh, Alex
    Mcdonough, John E.
    Adams, Taylor S.
    Vos, Robin
    De Man, Ruben
    Myers, Greg
    Ceulemans, Laurens J.
    Vanaudenaerde, Bart M.
    Wuyts, Wim A.
    Yan, Xiting
    Schuppe, Jonas
    Hagood, James S.
    Kaminski, Naftali
    Bar-Joseph, Ziv
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (12)
  • [8] Domain adaptation for supervised integration of scRNA-seq data
    Yutong Sun
    Peng Qiu
    Communications Biology, 6
  • [9] Visualizing scRNA-Seq data at population scale with GloScope
    Wang, Hao
    Torous, William
    Gong, Boying
    Purdom, Elizabeth
    GENOME BIOLOGY, 2024, 25 (01):
  • [10] Integration tools for scRNA-seq data and spatial transcriptomics sequencing data
    Yan, Chaorui
    Zhu, Yanxu
    Chen, Miao
    Yang, Kainan
    Cui, Feifei
    Zou, Quan
    Zhang, Zilong
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2024, 23 (04) : 295 - 302