Dynamic multi-strategy integrated differential evolution algorithm based on reinforcement learning for optimization problems

被引:1
|
作者
Yang, Qingyong [1 ]
Chu, Shu-Chuan [1 ]
Pan, Jeng-Shyang [1 ,2 ]
Chou, Jyh-Horng [3 ,4 ]
Watada, Junzo [5 ]
机构
[1] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao 266590, Peoples R China
[2] Chaoyang Univ Technol, Dept Informat Management, Taichung, Taiwan
[3] Kaohsiung Med Univ, Dept Healthcare Adm & Med Informat, Kaohsiung 807, Taiwan
[4] Feng Chia Univ, Dept Mech & Comp Aided Engn, Taichung 407, Taiwan
[5] Waseda Univ, Grad Sch Informat Prod & Syst, Kitakyushu 8080135, Japan
关键词
Differential evolution; Multi-population; Population diversity; Reinforcement learning; Individual dynamic migration; MUTATION STRATEGY; ENSEMBLE; SEARCH; PARAMETERS; SOLVE;
D O I
10.1007/s40747-023-01243-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The introduction of a multi-population structure in differential evolution (DE) algorithm has been proven to be an effective way to achieve algorithm adaptation and multi-strategy integration. However, in existing studies, the mutation strategy selection of each subpopulation during execution is fixed, resulting in poor self-adaptation of subpopulations. To solve this problem, a dynamic multi-strategy integrated differential evolution algorithm based on reinforcement learning (RLDMDE) is proposed in this paper. By employing reinforcement learning, each subpopulation can adaptively select the mutation strategy according to the current environmental state (population diversity). Based on the population state, this paper proposes an individual dynamic migration strategy to "reward" or "punish" the population to avoid wasting individual computing resources. Furthermore, this paper applies two methods of good point set and random opposition-based learning (ROBL) in the population initialization stage to improve the quality of the initial solutions. Finally, to evaluate the performance of the RLDMDE algorithm, this paper selects two benchmark function sets, CEC2013 and CEC2017, and six engineering design problems for testing. The results demonstrate that the RLDMDE algorithm has good performance and strong competitiveness in solving optimization problems.
引用
收藏
页码:1845 / 1877
页数:33
相关论文
共 50 条
  • [21] A Multi-strategy Improved Outpost and Differential Evolution Mutation Marine Predators Algorithm for Global Optimization
    Shuhan Zhang
    Shengsheng Wang
    Ruyi Dong
    Kai Zhang
    Xiaohui Zhang
    Arabian Journal for Science and Engineering, 2023, 48 : 10493 - 10516
  • [22] A Multi-strategy Improved Outpost and Differential Evolution Mutation Marine Predators Algorithm for Global Optimization
    Zhang, Shuhan
    Wang, Shengsheng
    Dong, Ruyi
    Zhang, Kai
    Zhang, Xiaohui
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (08) : 10493 - 10516
  • [23] Multi-objective optimization based reverse strategy with differential evolution algorithm for constrained optimization problems
    Gao, Liang
    Zhou, Yinzhi
    Li, Xinyu
    Pan, Quanke
    Yi, Wenchao
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (14) : 5976 - 5987
  • [24] Multi-strategy Mutation Constrained Differential Evolution Algorithm Based on Replacement and Restart Mechanism
    Tong, Lyuyang
    Dong, Minggang
    Jing, Chao
    COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING, CHINESECSCW 2018, 2019, 917 : 77 - 86
  • [25] Differential evolution algorithm with multi-population cooperation and multi-strategy integration
    Li, Xiaoyu
    Wang, Lei
    Jiang, Qiaoyong
    Li, Ning
    NEUROCOMPUTING, 2021, 421 : 285 - 302
  • [26] A multi-strategy improved Coati optimization algorithm for solving global optimization problems
    Luo, Xin
    Yuan, Yage
    Fu, Youfa
    Huang, Haisong
    Wei, Jianan
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (04):
  • [27] A modified whale optimization algorithm with multi-strategy mechanism for global optimization problems
    Li, Mingyuan
    Yu, Xiaobing
    Fu, Bingbing
    Wang, Xuming
    NEURAL COMPUTING & APPLICATIONS, 2023,
  • [28] A Multi-Strategy Improvement Secretary Bird Optimization Algorithm for Engineering Optimization Problems
    Qin, Song
    Liu, Junling
    Bai, Xiaobo
    Hu, Gang
    BIOMIMETICS, 2024, 9 (08)
  • [29] Differential evolution algorithm with multi-population cooperation and multi-strategy integration
    Li, Xiaoyu
    Wang, Lei
    Jiang, Qiaoyong
    Li, Ning
    Wang, Lei (leiwang_lw@126.com), 1600, Elsevier B.V., Netherlands (421): : 285 - 302
  • [30] A multi-strategy enhanced African vultures optimization algorithm for global optimization problems
    Zheng, Rong
    Hussien, Abdelazim G.
    Qaddoura, Raneem
    Jia, Heming
    Abualigah, Laith
    Wang, Shuang
    Saber, Abeer
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2023, 10 (01) : 329 - 356