Empirical study of evolutionary computation-based multi-objective Bayesian optimization for materials discovery

被引:0
|
作者
Ohno, Hiroshi [1 ]
机构
[1] Toyota Cent Res & Dev Labs Inc, 41-1 Yokomichi, Nagakute, Aichi 4801192, Japan
关键词
Multi-objective Bayesian optimization; Evolutionary strategies; Random scalarizations; Hydrogen storage materials; Materials informatics; WEIGHT DESIGN; ALGORITHM; PERFORMANCE; MOEA/D;
D O I
10.1007/s00500-023-09058-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-objective Bayesian optimization (MOBO) is broadly used for applications with high cost observations such as materials discovery. In BO, a derivative-free optimization algorithm is generally employed to maximize the acquisition function. In this study, we present a method for acquisition function maximization based on a (1 + 1)-evolutionary strategy in MOBO for materials discovery, which is a simple and easy-to-use approach with low computational complexity compared to conventional algorithms. In MOBO, weight vectors are used for scalarizing MO functions, typically employed to convert MO optimization into single-objective optimization. The weight vectors at each round of MOBO are generally obtained using either stochastic (random sampling) or deterministic methods based on searched results. To clarify the effect of both the scalarizing methods on MOBO, we examine the effectiveness of random sampling methods versus two deterministic methods: reference-vector-based and self-organizing map-based decomposition methods. Experimental results from four test functions and a hydrogen storage material database as a concrete application show the effectiveness of the proposed method and the random sampling method. These results implied that the proposed method was useful for real-world MOBO experiments in materials discovery.
引用
收藏
页码:8807 / 8834
页数:28
相关论文
共 50 条
  • [31] Multi-Objective BiLevel Optimization by Bayesian Optimization
    Dogan, Vedat
    Prestwich, Steven
    ALGORITHMS, 2024, 17 (04)
  • [32] MOBOpt - multi-objective Bayesian optimization
    Galuzio, Paulo Paneque
    de Vasconcelos Segundo, Emerson Hochsteiner
    Coelho, Leandro dos Santos
    Mariani, Viviana Cocco
    SOFTWAREX, 2020, 12
  • [33] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Guo, Weian
    Chen, Ming
    Wang, Lei
    Wu, Qidi
    SOFT COMPUTING, 2017, 21 (20) : 5883 - 5891
  • [34] Multi-Objective Factored Evolutionary Optimization and the Multi-Objective Knapsack Problem
    Peerlinck, Amy
    Sheppard, John
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [35] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Weian Guo
    Ming Chen
    Lei Wang
    Qidi Wu
    Soft Computing, 2017, 21 : 5883 - 5891
  • [36] Evolutionary Multi-objective Diversity Optimization
    Anh Viet Do
    Guo, Mingyu
    Neumann, Aneta
    Neumann, Frank
    PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XVIII, PT IV, PPSN 2024, 2024, 15151 : 117 - 134
  • [37] Evolutionary multi-objective optimization and visualization
    Obayashi, S
    New Developments in Computational Fluid Dynamics, 2005, 90 : 175 - 185
  • [38] Advances in Evolutionary Multi-objective Optimization
    Tan, Kay Chen
    SOFT COMPUTING APPLICATIONS, 2013, 195 : 7 - 8
  • [39] Foundations of Evolutionary Multi-Objective Optimization
    Friedrich, Toblas
    Neumann, Frank
    GECCO-2010 COMPANION PUBLICATION: PROCEEDINGS OF THE 12TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2010, : 2557 - 2575
  • [40] A Comparative Study of Constrained Multi-objective Evolutionary Algorithms on Constrained Multi-objective Optimization Problems
    Fan, Zhun
    Li, Wenji
    Cai, Xinye
    Fang, Yi
    Lu, Jiewei
    Wei, Caimin
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 209 - 216