Empirical study of evolutionary computation-based multi-objective Bayesian optimization for materials discovery

被引:0
|
作者
Ohno, Hiroshi [1 ]
机构
[1] Toyota Cent Res & Dev Labs Inc, 41-1 Yokomichi, Nagakute, Aichi 4801192, Japan
关键词
Multi-objective Bayesian optimization; Evolutionary strategies; Random scalarizations; Hydrogen storage materials; Materials informatics; WEIGHT DESIGN; ALGORITHM; PERFORMANCE; MOEA/D;
D O I
10.1007/s00500-023-09058-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-objective Bayesian optimization (MOBO) is broadly used for applications with high cost observations such as materials discovery. In BO, a derivative-free optimization algorithm is generally employed to maximize the acquisition function. In this study, we present a method for acquisition function maximization based on a (1 + 1)-evolutionary strategy in MOBO for materials discovery, which is a simple and easy-to-use approach with low computational complexity compared to conventional algorithms. In MOBO, weight vectors are used for scalarizing MO functions, typically employed to convert MO optimization into single-objective optimization. The weight vectors at each round of MOBO are generally obtained using either stochastic (random sampling) or deterministic methods based on searched results. To clarify the effect of both the scalarizing methods on MOBO, we examine the effectiveness of random sampling methods versus two deterministic methods: reference-vector-based and self-organizing map-based decomposition methods. Experimental results from four test functions and a hydrogen storage material database as a concrete application show the effectiveness of the proposed method and the random sampling method. These results implied that the proposed method was useful for real-world MOBO experiments in materials discovery.
引用
收藏
页码:8807 / 8834
页数:28
相关论文
共 50 条
  • [1] Multi-objective evolutionary computation and fuzzy optimization
    Jimenez, F.
    Cadenas, J. M.
    Sanchez, G.
    Gomez-Skarmeta, A. F.
    Verdegay, J. L.
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2006, 43 (01) : 59 - 75
  • [2] Multi-objective evolutionary computation and fuzzy optimization
    Jiménez, F.
    Cadenas, J.M.
    Sánchez, G.
    Gómez-Skarmeta, A.F.
    Verdegay, J.L.
    International Journal of Approximate Reasoning, 2006, 43 (01): : 59 - 75
  • [3] Evolutionary Multi-Objective Bayesian Optimization Based on Multisource Online Transfer Learning
    Li, Huiting
    Jin, Yaochu
    Chai, Tianyou
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (01): : 488 - 502
  • [4] Multi-objective optimization of HVAC system with an evolutionary computation algorithm
    Kusiak, Andrew
    Tang, Fan
    Xu, Guanglin
    ENERGY, 2011, 36 (05) : 2440 - 2449
  • [5] Multi-objective optimization of production scheduling with evolutionary computation: A review
    Ojstersek, Robert
    Brezocnik, Miran
    Buchmeister, Borut
    INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING COMPUTATIONS, 2020, 11 (03) : 359 - 376
  • [6] Optimized design of MEMS by evolutionary multi-objective optimization with interactive evolutionary computation
    Kamalian, R
    Takagi, H
    Agogino, AM
    GENETIC AND EVOLUTIONARY COMPUTATION GECCO 2004 , PT 2, PROCEEDINGS, 2004, 3103 : 1030 - 1041
  • [7] Airfoil optimization based on multi-objective bayesian
    Ruo-Lin Liu
    Qiang Zhao
    Xian-Jun He
    Xin-Yi Yuan
    Wei-Tao Wu
    Ming-Yu Wu
    Journal of Mechanical Science and Technology, 2022, 36 : 5561 - 5573
  • [8] Airfoil optimization based on multi-objective bayesian
    Liu, Ruo-Lin
    Zhao, Qiang
    He, Xian-Jun
    Yuan, Xin-Yi
    Wu, Wei-Tao
    Wu, Ming-Yu
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2022, 36 (11) : 5561 - 5573
  • [9] A Multi-objective Evolutionary Algorithm based on Decomposition for Constrained Multi-objective Optimization
    Martinez, Saul Zapotecas
    Coello, Carlos A. Coello
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 429 - 436
  • [10] A study on multiform multi-objective evolutionary optimization
    Liangjie Zhang
    Yuling Xie
    Jianjun Chen
    Liang Feng
    Chao Chen
    Kai Liu
    Memetic Computing, 2021, 13 : 307 - 318