A Simple and Powerful Global Optimization for Unsupervised Video Object Segmentation

被引:4
|
作者
Ponimatkin, Georgy [1 ]
Samet, Nermin [1 ]
Xiao, Yang [1 ]
Du, Yuming [1 ]
Marlet, Renaud [1 ,2 ]
Lepetit, Vincent [1 ]
机构
[1] Univ Gustave Eiffel, Ecole Ponts, LIGM, CNRS, Marne La Vallee, France
[2] Valeo Ai, Paris, France
关键词
D O I
10.1109/WACV56688.2023.00584
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a simple, yet powerful approach for unsupervised object segmentation in videos. We introduce an objective function whose minimum represents the mask of the main salient object over the input sequence. It only relies on independent image features and optical flows, which can be obtained using off-the-shelf self-supervised methods. It scales with the length of the sequence with no need for superpixels or sparsification, and it generalizes to different datasets without any specific training. This objective function can actually be derived from a form of spectral clustering applied to the entire video. Our method achieves on-par performance with the state of the art on standard benchmarks (DAVIS2016, SegTrack-v2, FBMS59), while being conceptually and practically much simpler.
引用
收藏
页码:5881 / 5892
页数:12
相关论文
共 50 条
  • [21] VideoCutLER: Surprisingly Simple Unsupervised Video Instance Segmentation
    Wang, Xudong
    Misra, Ishan
    Zeng, Ziyun
    Girdhar, Rohit
    Darrell, Trevor
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 22755 - 22764
  • [22] Global Optimality Guarantees for Nonconvex Unsupervised Video Segmentation
    Anderson, Brendon G.
    Sojoudi, Somayeh
    2019 57TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2019, : 965 - 972
  • [23] Multi-Attention Network for Unsupervised Video Object Segmentation
    Zhang, Guifang
    Wong, Hon-Cheng
    Lo, Sio-Long
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 71 - 75
  • [24] Learning Motion Guidance for Efficient Unsupervised Video Object Segmentation
    Zhao Z.-C.
    Zhang K.-H.
    Fan J.-Q.
    Liu Q.-S.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (04): : 872 - 880
  • [25] Learning Unsupervised Video Object Segmentation through Visual Attention
    Wang, Wenguan
    Song, Hongmei
    Zhao, Shuyang
    Shen, Jianbing
    Zhao, Sanyuan
    Hoi, Steven C. H.
    Ling, Haibin
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3059 - 3069
  • [26] A neural network based scheme for unsupervised video object segmentation
    Doulamis, AD
    Doulamis, ND
    Kollias, SD
    1998 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL 2, 1998, : 632 - 636
  • [27] Unsupervised Video Object Segmentation via Prototype Memory Network
    Yonsei University, Korea, Republic of
    不详
    Proc. - IEEE Winter Conf. Appl. Comput. Vis., WACV, 1600, (5913-5923):
  • [28] Unsupervised Video Object Segmentation via Prototype Memory Network
    Lee, Minhyeok
    Cho, Suhwan
    Lee, Seunghoon
    Park, Chaewon
    Lee, Sangyoun
    arXiv, 2022,
  • [29] Unsupervised Video Object Segmentation via Prototype Memory Network
    Lee, Minhyeok
    Cho, Suhwan
    Lee, Seunghoon
    Park, Chaewon
    Lee, Sangyoun
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5913 - 5923
  • [30] Flow-Edge Guided Unsupervised Video Object Segmentation
    Zhou, Yifeng
    Xu, Xing
    Shen, Fumin
    Zhu, Xiaofeng
    Shen, Heng Tao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (12) : 8116 - 8127