A Simple and Powerful Global Optimization for Unsupervised Video Object Segmentation

被引:4
|
作者
Ponimatkin, Georgy [1 ]
Samet, Nermin [1 ]
Xiao, Yang [1 ]
Du, Yuming [1 ]
Marlet, Renaud [1 ,2 ]
Lepetit, Vincent [1 ]
机构
[1] Univ Gustave Eiffel, Ecole Ponts, LIGM, CNRS, Marne La Vallee, France
[2] Valeo Ai, Paris, France
关键词
D O I
10.1109/WACV56688.2023.00584
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a simple, yet powerful approach for unsupervised object segmentation in videos. We introduce an objective function whose minimum represents the mask of the main salient object over the input sequence. It only relies on independent image features and optical flows, which can be obtained using off-the-shelf self-supervised methods. It scales with the length of the sequence with no need for superpixels or sparsification, and it generalizes to different datasets without any specific training. This objective function can actually be derived from a form of spectral clustering applied to the entire video. Our method achieves on-par performance with the state of the art on standard benchmarks (DAVIS2016, SegTrack-v2, FBMS59), while being conceptually and practically much simpler.
引用
收藏
页码:5881 / 5892
页数:12
相关论文
共 50 条
  • [1] Unsupervised video segmentation and object tracking
    Sista, S
    Kashyap, RL
    COMPUTERS IN INDUSTRY, 2000, 42 (2-3) : 127 - 146
  • [2] Sequential Clique Optimization for Unsupervised and Weakly Supervised Video Object Segmentation
    Koh, Yeong Jun
    Heo, Yuk
    Kim, Chang-Su
    ELECTRONICS, 2022, 11 (18)
  • [3] Reciprocal Transformations for Unsupervised Video Object Segmentation
    Ren, Sucheng
    Liu, Wenxi
    Liu, Yongtuo
    Chen, Haoxin
    Han, Guoqiang
    He, Shengfeng
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 15450 - 15459
  • [4] Anchor Diffusion for Unsupervised Video Object Segmentation
    Yang, Zhao
    Wang, Qiang
    Bertinetto, Luca
    Hu, Weiming
    Bai, Song
    Torr, Philip H. S.
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 931 - 940
  • [5] Unsupervised Video Object Segmentation by Supertrajectory Labeling
    Masuda, Masahiro
    Mochizuki, Yoshihiko
    Ishikawa, Hiroshi
    PROCEEDINGS OF THE FIFTEENTH IAPR INTERNATIONAL CONFERENCE ON MACHINE VISION APPLICATIONS - MVA2017, 2017, : 448 - 451
  • [6] Unsupervised video object segmentation by spatiotemporal graphical model
    Guo, Lijun
    Cheng, Tingting
    Huang, Yuanjie
    Zhao, Jieyu
    Zhang, Rong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (01) : 1037 - 1053
  • [7] Guided Slot Attention for Unsupervised Video Object Segmentation
    Lee, Minhyeok
    Cho, Suhwan
    Lee, Dogyoon
    Park, Chaewon
    Lee, Jungho
    Lee, Sangyoun
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024, 2024, : 3807 - 3816
  • [8] Unsupervised video object segmentation by spatiotemporal graphical model
    Lijun Guo
    Tingting Cheng
    Yuanjie Huang
    Jieyu Zhao
    Rong Zhang
    Multimedia Tools and Applications, 2017, 76 : 1037 - 1053
  • [9] Evaluating quality of motion for unsupervised video object segmentation
    Cheng, Guanjun
    Song, Huihui
    OPTOELECTRONICS LETTERS, 2024, 20 (06) : 379 - 384
  • [10] Instance Embedding Transfer to Unsupervised Video Object Segmentation
    Li, Siyang
    Seybold, Bryan
    Vorobyov, Alexey
    Fathi, Alireza
    Huang, Qin
    Kuo, C. -C. Jay
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 6526 - 6535