IMFF-Net: An integrated multi-scale feature fusion network for accurate retinal vessel segmentation from fundus images

被引:9
|
作者
Liu, Mingtao [1 ]
Wang, Yunyu [1 ]
Wang, Lei [1 ]
Hu, Shunbo [1 ]
Wang, Xing [1 ]
Ge, Qingman [2 ]
机构
[1] Linyi Univ, Sch Informat Sci & Engn, Shandong 276000, Peoples R China
[2] Lunan Eye Hosp, Linyi 276000, Shandong, Peoples R China
关键词
Retinal vessels segmentation; Deep learning; Multi -scale feature fusion; U-NET;
D O I
10.1016/j.bspc.2024.105980
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Extracting vascular structures from retinal fundus images plays a critical role in the early diagnosis and long-term treatment of ophthalmic diseases. Traditional manual segmentation of retinal vessels is a time-consuming process that demands a high level of expertise. In recent years, deep learning has made significant strides in retinal vessel segmentation, but it still faces certain challenges in fine vessel segmentation, such as the loss of spatial information resulting from multi-level feature extraction and the blurring of fine structural segmentation. To address these issues, we propose a multi-scale feature fusion segmentation network known as IMFF-Net. Specifically, we propose two fusion blocks in the IMFF-Net. Firstly, an Attention Pooling Feature Fusion (APF) block is proposed, which consists of Max Pooling, and Average Pooling and incorporates the SE block. This design effectively mitigates the problem of spatial information loss stemming from multiple pooling operations. Secondly, the Upsampling and Downsampling Feature Fusion block (UDFF) is proposed to weightedly merge the feature maps of each downsampling with the upsampling feature maps, thereby facilitating the precise segmentation of fine structures. To validate the performance of the proposed IMFF-Net, we conducted experiments on three retinal blood vessel segmentation datasets: DRIVE, STARE, and CHASE_DB1. IMFF-Net achieved outstanding results on the test set of these three public datasets with accuracies of 0.9621, 0.9707, and 0.9730, and sensitivities of 0.8575, 0.8634, and 0.8048, respectively. These results demonstrate the superior performance of IMFF-Net compared to the backbone network and other state-of-the-art methods. Our code is available at: https://gith ub.com/wangyunyuwyy/IMFF-Net.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] MF-Net: Multi-Scale Information Fusion Network for CNV Segmentation in Retinal OCT Images
    Meng, Qingquan
    Wang, Lianyu
    Wang, Tingting
    Wang, Meng
    Zhu, Weifang
    Shi, Fei
    Chen, Zhongyue
    Chen, Xinjian
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [22] LMSA-Net: A lightweight multi-scale aware network for retinal vessel segmentation
    Chen, Jian
    Wan, Jiaze
    Fang, Zhenghan
    Wei, Lifang
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2023, 33 (05) : 1515 - 1530
  • [23] Wave-Net: A lightweight deep network for retinal vessel segmentation from fundus images
    Liu, Yanhong
    Shen, Ji
    Yang, Lei
    Yu, Hongnian
    Bian, Guibin
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 152
  • [24] A multi-scale tensor voting approach for small retinal vessel segmentation in high resolution fundus images
    Christodoulidis, Argyrios
    Hurtut, Thomas
    Ben Tahar, Houssem
    Cheriet, Farida
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2016, 52 : 28 - 43
  • [25] DBMAE-Net: A dual branch multi-scale feature adaptive extraction network for retinal arteriovenous vessel segmentation
    Wan, Cheng
    Cheng, Jianhong
    Yang, Weihua
    Chen, Lu
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 104
  • [26] MTC-Net: Multi-scale feature fusion network for medical image segmentation
    Ren S.
    Wang Y.
    Journal of Intelligent and Fuzzy Systems, 2024, 46 (04): : 8729 - 8740
  • [27] Multi scale multi attention network for blood vessel segmentation in fundus images
    Kande, Giri Babu
    Nalluri, Madhusudana Rao
    Manikandan, R.
    Cho, Jaehyuk
    Veerappampalayam Easwaramoorthy, Sathishkumar
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [28] Multi-scale Bottleneck Residual Network for Retinal Vessel Segmentation
    Peipei Li
    Zhao Qiu
    Yuefu Zhan
    Huajing Chen
    Sheng Yuan
    Journal of Medical Systems, 47
  • [29] A Multi-Scale Residual Attention Network for Retinal Vessel Segmentation
    Jiang, Yun
    Yao, Huixia
    Wu, Chao
    Liu, Wenhuan
    SYMMETRY-BASEL, 2021, 13 (01): : 1 - 16
  • [30] MULTI-SCALE REGULARIZED DEEP NETWORK FOR RETINAL VESSEL SEGMENTATION
    Cherukuri, Venkateswararao
    Kumar, Vijay B. G.
    Bala, Raja
    Monga, Vishal
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 824 - 828