Frequency-Based Optimal Style Mix for Domain Generalization in Semantic Segmentation of Remote Sensing Images

被引:1
|
作者
Iizuka, Reo [1 ,2 ]
Xia, Junshi [3 ]
Yokoya, Naoto [1 ,3 ]
机构
[1] Univ Tokyo, Grad Sch Frontier Sci, Dept Complex Sci & Engn, Chiba 2778561, Japan
[2] Boston Consulting Grp BCG, Tokyo 1030022, Japan
[3] RIKEN, Ctr Adv Intelligence Project, Tokyo 1030027, Japan
基金
日本科学技术振兴机构;
关键词
Frequency-domain analysis; Data models; Training; Semantic segmentation; Task analysis; Remote sensing; Predictive models; Domain generalization (DG); semantic segmentation; style randomization (SR);
D O I
10.1109/TGRS.2023.3344670
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Supervised learning methods assume that training and test data are sampled from the same distribution. However, this assumption is not always satisfied in practical situations of land cover semantic segmentation when models trained in a particular source domain are applied to other regions. This is because domain shifts caused by variations in location, time, and sensor alter the distribution of images in the target domain from that of the source domain, resulting in significant degradation of model performance. To mitigate this limitation, domain generalization (DG) has gained attention as a way of generalizing from source domain features to unseen target domains. One approach is style randomization (SR), which enables models to learn domain-invariant features through randomizing styles of images in the source domain. Despite its potential, existing methods face several challenges, such as inflexible frequency decomposition, high computational and data preparation demands, slow speed of randomization, and lack of consistency in learning. To address these limitations, we propose a frequency-based optimal style mix (FOSMix), which consists of three components: 1) full mix (FM) enhances the data space by maximally mixing the style of reference images into the source domain; 2) optimal mix (OM) keeps the essential frequencies for segmentation and randomizes others to promote generalization; and 3) regularization of consistency ensures that the model can stably learn different images with the same semantics. Extensive experiments that require the model's generalization ability, with domain shift caused by variations in regions and resolutions, demonstrate that the proposed method achieves superior segmentation in remote sensing. The source code is available at https://github.com/Reo-I/FOSMix.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [31] Semantic Segmentation Method for Remote Sensing Images Based on Improved Swin Transformer
    Wang, Yizhong
    Hu, Yaqi
    Wu, Xiaosuo
    Yan, Haowen
    Wang, Xiaocheng
    Computer Engineering and Applications, 2024, 60 (11) : 194 - 203
  • [32] Unsupervised Domain Adaptation Semantic Segmentation for Remote-Sensing Images via Covariance Attention
    Liu, Yikun
    Kang, Xudong
    Huang, Yuwen
    Wang, Kuikui
    Yang, Gongping
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [33] A Fine-Grained Unsupervised Domain Adaptation Framework for Semantic Segmentation of Remote Sensing Images
    Wang, Luhan
    Xiao, Pengfeng
    Zhang, Xueliang
    Chen, Xinyang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 4109 - 4121
  • [34] Learning to Adapt Adversarial Perturbation Consistency for Domain Adaptive Semantic Segmentation of Remote Sensing Images
    Xi, Zhihao
    Meng, Yu
    Chen, Jingbo
    Deng, Yupeng
    Liu, Diyou
    Kong, Yunlong
    Yue, Anzhi
    REMOTE SENSING, 2023, 15 (23)
  • [35] Category-Level Assignment for Cross-Domain Semantic Segmentation in Remote Sensing Images
    Ni, Huan
    Liu, Qingshan
    Guan, Haiyan
    Tang, Hong
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [36] Augmentation-based Domain Generalization for Semantic Segmentation
    Schwonberg, Manuel
    El Bouazati, Fadoua
    Schmidt, Nico M.
    Gottschalk, Hanno
    2023 IEEE INTELLIGENT VEHICLES SYMPOSIUM, IV, 2023,
  • [37] Frequency-based dual attention network for nighttime semantic segmentation
    Wan, Haifeng
    Guo, Jichang
    An, Guanhua
    Zheng, Sida
    Wang, Yudong
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (02)
  • [38] Threshold Attention Network for Semantic Segmentation of Remote Sensing Images
    Long, Wei
    Zhang, Yongjun
    Cui, Zhongwei
    Xu, Yujie
    Zhang, Xuexue
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [39] Convolutional Neural Network for the Semantic Segmentation of Remote Sensing Images
    Muhammad Alam
    Jian-Feng Wang
    Cong Guangpei
    LV Yunrong
    Yuanfang Chen
    Mobile Networks and Applications, 2021, 26 : 200 - 215
  • [40] A Synergistical Attention Model for Semantic Segmentation of Remote Sensing Images
    Li, Xin
    Xu, Feng
    Liu, Fan
    Lyu, Xin
    Tong, Yao
    Xu, Zhennan
    Zhou, Jun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61