Interferometric thermometry of ocular tissues for retinal laser therapy

被引:2
|
作者
Veysset, David [1 ,2 ]
Zhuo, Yueming [1 ,3 ]
Hattori, Junya [1 ,4 ]
Buckhory, Mohajeet [1 ,2 ]
Palanker, Daniel [1 ,2 ]
机构
[1] Stanford Univ, Hansen Expt Phys Lab, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Ophthalmol, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[4] Univ Tokyo, Dept Mech Engn, Tokyo, Japan
基金
美国国家卫生研究院;
关键词
MICRO-DISPLACEMENT MEASUREMENT; OPTICAL COHERENCE TOMOGRAPHY; TRANSFER-MATRIX METHOD; PHOTOTHERMAL THERAPY; PHOTOCOAGULATION; CONSOLIDATION; TEMPERATURE; TRANSMISSION; COAGULATION;
D O I
10.1364/BOE.475705
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Controlling the tissue temperature rise during retinal laser therapy is highly desirable for predictable and reproducible outcomes of the procedure, especially with non-damaging settings. In this work, we demonstrate a method for determining the optical absorption, the thermal conductivity, and the thermal expansion coefficients of RPE and choroid using phase-resolved optical coherence tomography (pOCT). These parameters are extracted from the measured changes in the optical path length (Delta OPL) using an axisymmetric thermo-mechanical model. This allows the calculation of the temperature rise during hyperthermia, which was further validated by imaging the temperature-sensitive fluorescence at the same location. We demonstrate that, with a temperature uncertainty of +/- 0.9 degrees C and a peak heating of about 17 degrees C following a laser pulse of 20 ms, this methodology is expected to be safe and sufficiently precise for calibration of the non-damaging retinal laser therapy. The method is directly translatable to in-vivo studies, where we expect a similar precision. (c) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:37 / 53
页数:17
相关论文
共 50 条
  • [31] Theoretical investigations of the processes of laser interaction with ocular tissues for laser applications in ophthalmology
    Pustovalov, V. K.
    Jean, B.
    LASER PHYSICS, 2006, 16 (08) : 1145 - 1160
  • [32] Free-Electron Laser (FEL) Ablation of Ocular Tissues
    R.A. Hill
    Q. Ren
    D.C. Nguyen
    L.-H. Liaw
    M.W. Berns
    Lasers in Medical Science, 1998, 13 : 219 - 226
  • [33] Free-electron laser (FEL) ablation of ocular tissues
    Hill, RA
    Ren, Q
    Nguyen, DC
    Liaw, LH
    Berns, MW
    LASERS IN MEDICAL SCIENCE, 1998, 13 (03) : 219 - 226
  • [34] In vitro NIR laser tissue welding of porcine ocular tissues
    Rosen, RB
    Savage, HE
    Halder, RK
    Kartazayeu, U
    McCormick, SA
    Katz, A
    Perry, HD
    Alfano, RR
    Photonic Therapeutics and Diagnostics, 2005, 5686 : 248 - 252
  • [35] ALTERNATING ARGON AND YAG LASER TREATMENT OF OCULAR-TISSUES
    SCHIRMER, KE
    CANADIAN JOURNAL OF OPHTHALMOLOGY-JOURNAL CANADIEN D OPHTALMOLOGIE, 1988, 23 (02): : 91 - 91
  • [36] EXTENSION OF INFRARED-LASER INTERFEROMETRIC THERMOMETRY TO SILICON-WAFERS POLISHED ON ONLY ONE SIDE
    DONNELLY, VM
    APPLIED PHYSICS LETTERS, 1993, 63 (10) : 1396 - 1398
  • [37] Augmented reality for retinal laser therapy
    Eom, Sangjun
    Pajic, Miroslav
    Gorlatova, Maria
    Hadziahmetovic, Majda
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [38] Recent Innovations in Retinal Laser Therapy
    Zheng, Mi
    Paulus, Yannis M.
    PHOTONICS, 2025, 12 (02)
  • [39] Laser therapy for rhegmatogenous retinal detachment
    Greenberg, Paul B.
    Baumal, Caroline R.
    CURRENT OPINION IN OPHTHALMOLOGY, 2001, 12 (03) : 171 - 174
  • [40] Indications for Retinal Laser Therapy Revisited
    Enders, P.
    Schaub, F.
    Fauser, S.
    KLINISCHE MONATSBLATTER FUR AUGENHEILKUNDE, 2018, 235 (12) : 1383 - 1392