Color-avoiding connected spanning subgraphs with minimum number of edges

被引:0
|
作者
Pinter, Jozsef [1 ,2 ]
Varga, Kitti [3 ,4 ,5 ]
机构
[1] Budapest Univ Technol & Econ, Inst Math, Dept Stochast, Budapest, Hungary
[2] HUN REN BME Stochast Res Grp, Budapest, Hungary
[3] Budapest Univ Technol & Econ, Fac Elect Engn & Informat, Dept Comp Sci & Informat Theory, Budapest, Hungary
[4] HUN REN ELTE Egervary Res Grp, Budapest, Hungary
[5] MTA ELTE Momentum Matroid Optimizat Res Grp, Budapest, Hungary
关键词
Approximation algorithms; Color-avoiding connectivity; Complexity; Matroids; Spanning subgraphs; COMPLEXITY;
D O I
10.1016/j.dam.2024.01.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We call a (not necessarily properly) edge-colored graph edge-color-avoiding connected if after the removal of edges of any single color, the graph remains connected. For vertex-colored graphs, similar definitions of color-avoiding connectivity can be given. In this article, we investigate the problem of determining the maximum number of edges that can be removed from either an edge- or a vertex-colored, color-avoiding connected graph so that it remains color-avoiding connected. First, we prove that this problem is NP-hard, and then, we give a polynomial -time approximation algorithm for it. To analyze the approximation factor of this algorithm, we determine the minimum number of edges of color-avoiding connected graphs on a given number of vertices and with a given number of colors. Furthermore, we also consider a generalization of edge-color-avoiding connectivity to matroids. (c) 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:25 / 43
页数:19
相关论文
共 50 条
  • [21] ON PARTITIONING THE EDGES OF GRAPHS INTO CONNECTED SUBGRAPHS
    JUNGER, M
    REINELT, G
    PULLEYBLANK, WR
    JOURNAL OF GRAPH THEORY, 1985, 9 (04) : 539 - 549
  • [22] An improved approximation algorithm for minimum size 2-edge connected spanning subgraphs
    Cheriyan, J
    Sebö, A
    Szigeti, Z
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, 1998, 1412 : 126 - 136
  • [23] Approximation schemes for minimum 2-connected spanning subgraphs in weighted planar graphs
    Berger, A
    Czumaj, A
    Grigni, M
    Zhao, HR
    ALGORITHMS - ESA 2005, 2005, 3669 : 472 - 483
  • [24] Approximating minimum-size k-connected spanning subgraphs via matching
    Cheriyan, J
    Thurimella, R
    37TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1996, : 292 - 301
  • [25] Approximating minimum-size k-connected spanning subgraphs via matching
    Cheriyan, J
    Thurimella, R
    SIAM JOURNAL ON COMPUTING, 2000, 30 (02) : 528 - 560
  • [26] Lower and upper bounds for the minimum number of edges in some subgraphs of the Johnson graph
    Dubinin, N. A.
    Neustroeva, E. A.
    Raigorodskii, A. M.
    Shubin, Ya. K.
    SBORNIK MATHEMATICS, 2024, 215 (05)
  • [27] Undirected simple connected graphs with minimum number of spanning trees
    Bogdanowicz, Zbigniew R.
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3074 - 3082
  • [28] MINIMUM NUMBER OF EDGES IN P4-CONNECTED GRAPHS
    USAMI, Y
    UTILITAS MATHEMATICA, 1984, 26 (NOV) : 109 - 169
  • [29] From Color-Avoiding to Color-Favored Percolation in Diluted Lattices
    Giusfredi, Michele
    Bagnoli, Franco
    FUTURE INTERNET, 2020, 12 (08):
  • [30] Regular connected bipancyclic spanning subgraphs of hypercubes
    Mane, S. A.
    Waphare, B. N.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (09) : 3551 - 3554