This article is devoted to the study of spectral optimization for inhomogeneous plates. In particular, we consider the optimization of the first eigenvalue of a vibrating plate with respect to its thickness and/or density. We prove the existence of an optimal thickness, using fine tools hinging on topological properties of rearrangement classes. In the case of a circular plate, we provide a characterization of this optimal thickness by means of Talenti inequalities. Moreover, we prove a stability result when assuming that the thickness and the density of the plate are linearly related. This proof relies on H-convergence tools applied to the biharmonic operator.
机构:
King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
Kafrelsheikh Univ, Fac Sci, Dept Math, Kafr Al Sheikh 33516, EgyptKing Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
Zenkour, A. M.
El-Mekawy, H. F.
论文数: 0引用数: 0
h-index: 0
机构:
Qassim Univ, Coll Business & Econ, Quantitat Methods Unit, Almelaida 51452, Saudi Arabia
Qassim Univ, Fac Econ & Adm, Dep Management Informat Syst, Buraydah 51452, Saudi Arabia
Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, EgyptKing Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
机构:
Consejo Nacl Invest Cient & Tecn, Ctr Atom Bariloche, Comis Nacl Energia Atom, R8402AGP, San Carlos De Bariloche, Rio Negro, ArgentinaConsejo Nacl Invest Cient & Tecn, Ctr Atom Bariloche, Comis Nacl Energia Atom, R8402AGP, San Carlos De Bariloche, Rio Negro, Argentina
Fosco, C. D.
Mazzitelli, F. D.
论文数: 0引用数: 0
h-index: 0
机构:Consejo Nacl Invest Cient & Tecn, Ctr Atom Bariloche, Comis Nacl Energia Atom, R8402AGP, San Carlos De Bariloche, Rio Negro, Argentina