Hybrid quantum nanophotonic devices with color centers in nanodiamonds [Invited]

被引:14
|
作者
Sahoo, Swetapadma [1 ,2 ,3 ]
Davydov, Valery A. [4 ]
Agafonov, Viatcheslav N. [5 ]
Bogdanov, Simeon I. [1 ,2 ,3 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 60801 USA
[2] Univ Illinois, Nick Holonyak Jr Micro & Nanotechnol Lab, Urbana, IL 61801 USA
[3] Univ Illinois, Illinois Quantum Informat Sci & Technol Ctr, Urbana, IL 61801 USA
[4] Russian Acad Sci, LF Vereshchagin Inst High Pressure Phys, Troitsk 142190, Moscow, Russia
[5] Univ Tours, GREMAN, CNRS, UMR 7347, F-37200 Tours, France
关键词
NITROGEN-VACANCY CENTERS; DIAMOND NANOCRYSTALS; SPONTANEOUS EMISSION; MATERIAL PLATFORMS; HIGH-PRESSURE; WAVE-GUIDE; SI-V; FLUORESCENCE; GRAPHITE; BRIGHT;
D O I
10.1364/OME.471376
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Optically active color centers in nanodiamonds offer unique opportunities for generating and manipulating quantum states of light. These mechanically, chemically, and optically robust emitters can be produced in mass quantities, deterministically manipulated, and integrated with a variety of quantum device geometries and photonic material platforms. Nanodiamonds with deeply sub-wavelength sizes coupled to nanophotonic structures feature a giant enhancement of light-matter interaction, promising high bitrates in quantum photonic systems. We review the recent advances in controlled techniques for synthesizing, selecting, and manipulating nanodiamond-based color centers for their integration with quantum nanophotonic devices.
引用
收藏
页码:191 / 217
页数:27
相关论文
共 50 条
  • [21] Quantum memory based on SiV-centers in nanodiamonds
    Berezhnoi, A. D.
    Zakirov, A., I
    Kalachev, A. A.
    LASER PHYSICS LETTERS, 2022, 19 (12)
  • [22] NANOPHOTONIC DEVICES FOR ON-CHIP OPTICAL SIGNAL TRANSMISSION AND PROCESSING (Invited Paper)
    Wang, Jian
    2014 13TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN), 2014,
  • [23] Hybrid fibers: multimaterial nanophotonic devices in fiber form
    Schmidt, M. A.
    Lee, H.
    Uebel, P.
    Granzow, N.
    Russell, P. St. J.
    2012 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2012,
  • [24] Nanophotonic devices and circuits based on colloidal quantum dots
    Chen, Jianjun
    Rong, Kexiu
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (12) : 4502 - 4537
  • [25] A hybrid approach towards nanophotonic devices with enhanced functionality
    Barth, Michael
    Sting, Johannes
    Kouba, Josef
    Nuesse, Nils
    Loechel, Bernd
    Benson, Oliver
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2009, 246 (02): : 298 - 301
  • [26] Silicon nanophotonic devices for chip-scale optical communication applications [Invited]
    Fainman, Y.
    Nezhad, M. P.
    Tan, D. T. H.
    Ikeda, K.
    Bondarenko, O.
    Grieco, A.
    APPLIED OPTICS, 2013, 52 (04) : 613 - 624
  • [27] High speed nanophotonic devices based on quantum dots
    Bimberg, D.
    Fiol, G.
    Kuntz, M.
    Meuer, C.
    Laemmlin, M.
    Ledentsov, N. N.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2006, 203 (14): : 3523 - 3532
  • [28] Hybrid nanoplasmonic waveguides and nanophotonic integrated devices on silicon
    Dai, Daoxin
    Guan, Xiaowei
    He, Sailing
    OPTOELECTRONIC INTEGRATED CIRCUITS XV, 2013, 8628
  • [29] Quantum Interference of Electromechanically Stabilized Emitters in Nanophotonic Devices
    Machielse, B.
    Bogdanovic, S.
    Meesala, S.
    Gauthier, S.
    Burek, M. J.
    Joe, G.
    Chalupnik, M.
    Sohn, Y., I
    Holzgrafe, J.
    Evans, R. E.
    Chia, C.
    Atikian, H.
    Bhaskar, M. K.
    Sukachev, D. D.
    Shao, L.
    Maity, S.
    Lukin, M. D.
    Loncar, M.
    PHYSICAL REVIEW X, 2019, 9 (03):
  • [30] Light-matter interactions in quantum nanophotonic devices
    Gonzalez-Tudela, Alejandro
    Reiserer, Andreas
    Garcia-Ripoll, Juan Jose
    Garcia-Vidal, Francisco J.
    NATURE REVIEWS PHYSICS, 2024, 6 (03) : 166 - 179