Controller tuning with Bayesian optimization and its acceleration: Concept and experimental validation

被引:3
|
作者
Fujimoto, Yusuke [1 ]
Sato, Hiroki [1 ]
Nagahara, Masaaki [1 ]
机构
[1] Univ Kitakyushu, Fukuoka, Japan
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
Bayesian optimization; data-driven control; FEEDBACK; DESIGN;
D O I
10.1002/asjc.2847
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work discusses a data-driven approach to controller parameter tuning based on Bayesian optimization. In particular, we propose to design the prior mean function based on a model of the plant. By encoding the information on the model, the optimization needs a much fewer iterations than standard approaches. The effectiveness of the proposed method is demonstrated with a practical experiment.
引用
收藏
页码:2408 / 2414
页数:7
相关论文
共 50 条
  • [31] Multivariable PID Control Tuning: A Controller Validation Approach
    Balaguer, P.
    Wahab, N. A.
    Katebi, M. R.
    Vilanova, R.
    2008 IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION, PROCEEDINGS, 2008, : 289 - +
  • [32] Automatic tuning of hyperparameters using Bayesian optimization
    A. Helen Victoria
    G. Maragatham
    Evolving Systems, 2021, 12 : 217 - 223
  • [33] Bayesian Optimization for Parameter Tuning in Evolutionary Algorithms
    Roman, Ibai
    Ceberio, Josu
    Mendiburu, Alexander
    Lozano, Jose A.
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 4839 - 4845
  • [34] Anatomy of Learned Database Tuning with Bayesian Optimization
    Barbulescu, George-Octavian
    Triantafillou, Peter
    2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOPS (ICDEW 2022), 2022, : 9 - 15
  • [35] Multiobjective Bayesian optimization for online accelerator tuning
    Roussel, Ryan
    Hanuka, Adi
    Edelen, Auralee
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2021, 24 (06):
  • [36] Event generator tuning using Bayesian optimization
    Ilten, P.
    Williams, M.
    Yang, Y.
    JOURNAL OF INSTRUMENTATION, 2017, 12
  • [37] Automatic tuning of hyperparameters using Bayesian optimization
    Victoria, A. Helen
    Maragatham, G.
    EVOLVING SYSTEMS, 2021, 12 (01) : 217 - 223
  • [38] EXPERIMENTAL EVALUATION OF A SELF-TUNING CONTROLLER
    LIM, CM
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 1990, 37 (03) : 193 - 194
  • [39] Optimization of Spinal Cord Stimulation Using Bayesian Preference Learning and Its Validation
    Zhao, Zixi
    Ahmadi, Aliya
    Hoover, Caleb
    Grado, Logan
    Peterson, Nicholas
    Wang, Xinran
    Freeman, David
    Murray, Thomas
    Lamperski, Andrew
    Darrow, David
    Netoff, Theoden I.
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2021, 29 : 1987 - 1997
  • [40] A new methodology for Vienna rectifier rating and controller tuning based on control saturation analysis: Experimental validation
    Youssef, Nesrine Bel Haj
    Al-Haddad, Kamal
    Kanaan, Hadi
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, VOLS 1-7, 2006, : 1328 - 1333