Ozone degradation of tetracycline hydrochloride enhanced by magnetic nanofluid composed of Fe3O4 nanoparticles

被引:0
|
作者
Li, Mengzhao [1 ]
Dong, Wei [2 ]
Tong, Yu [2 ]
Gao, Penghao [1 ]
Pan, Jinkai [2 ]
Wang, Junjie [2 ]
Kong, Wenle [2 ]
Gao, Peiling [4 ,5 ]
Liu, Xinpeng [2 ,3 ,5 ,6 ]
机构
[1] Shandong Univ Technol, Sch Agr Engn & Food Sci, Zibo, Peoples R China
[2] Shandong Univ Technol, Sch Resources & Environm Engn, Zibo, Peoples R China
[3] Shanghai Key Lab Atmospher Particle Pollut & Preve, Shanghai, Peoples R China
[4] Shandong Univ Technol, Sch Agr Engn & Food Sci, Zibo 255000, Peoples R China
[5] Shandong Univ Technol, Sch Resources & Environm Engn, Zibo 255000, Peoples R China
[6] Shanghai Key Lab Atmospher Particle Pollut & Preve, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanofluid; antibiotic; ozonation; magnetite nanoparticle; advanced oxidation; WASTE-WATER; CATALYTIC OZONATION; CO2; ABSORPTION; REMOVAL; ADSORBENT;
D O I
10.1080/09593330.2024.2334771
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Magnetic Fe3O4 nanoparticles were added into the aqueous phase to form nanofluid systems, in which ozone was used for the oxidation of tetracycline hydrochloride (TC) in the solution. The nanomaterials were characterized using SEM, XRD, EDS, and FT-IR. The effects of nanoparticles size, addition ratio, and number of cycles on the process of ozone oxidation of TC were investigated. The results indicated that the addition ratio of nanoparticles have a certain impact on the performance of ozone oxidation. When the addition ratio increased from 0.02% to 0.4%, the removal rate of TC in the solution was improved significantly. Besides, the particle size of nanoparticles showed a greater impact on ozone oxidation. At the nanoscale, Fe3O4 nanoparticles exhibited significant strengthening properties, which is attributed to the construction of nanofluid systems. The removal rate of TC in solution decreased obviously with the increase of nanoparticles size. The Fe3O4 nanoparticles with particle size of 20 nm showed the most significant effect on TC degradation. The recycling experiment showed that magnetic Fe3O4 nanoparticles had stable regeneration performance. For three times of recycling treatment, with a Fe3O4 addition ratio of 0.4%, the removal rate of TC reached 98.7%, 97.21%, and 96%, respectively. Based on the characterization results, the strengthening mechanism was analyzed. The experimental results indicated that construction of nanofluids systems could improve the utilization rate of ozone, and Fe3O4 nanoparticles were reusable and easily recyclable.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [41] Investigation of magnetite Fe3O4 nanoparticles for magnetic hyperthermia
    Surowiec, Zbigniew
    Miaskowski, Arkadiusz
    Budzynski, Mieczyslaw
    NUKLEONIKA, 2017, 62 (02) : 183 - 186
  • [42] Dynamic magnetic behavior of Fe3O4 colloidal nanoparticles
    Hrianca, I
    Caizer, C
    Schlett, Z
    JOURNAL OF APPLIED PHYSICS, 2002, 92 (04) : 2125 - 2132
  • [43] Synthesis of Fe3O4 nanoparticles and preparation of magnetic fluids
    Wang, Xiu-Yu
    Yang, Gui-Qin
    Zhang, Zhi-Sheng
    Yan, Le-Mei
    Meng, Jian-Hua
    Gongneng Cailiao yu Qijian Xuebao/Journal of Functional Materials and Devices, 2005, 11 (02): : 228 - 232
  • [44] Heterogeneous degradation of atrazine with ozone catalyzed by ordered mesoporous Fe3O4
    Zhu, Shumin
    Dong, Bingzhi
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [45] Comparison of schemes for preparing magnetic Fe3O4 nanoparticles
    Ruoyu Honga
    ChinaParticuology, 2007, (Z1) : 186 - 191
  • [46] Thrombolysis Enhancing by Magnetic Manipulation of Fe3O4 Nanoparticles
    Li, Qian
    Liu, Xiaojun
    Chang, Ming
    Lu, Zhen
    MATERIALS, 2018, 11 (11):
  • [47] Immobilization of horseradish peroxidase on Fe3O4 magnetic nanoparticles
    Mohamed, Saleh A.
    Al-Harbi, Majed H.
    Almulaiky, Yaaser Q.
    Ibrahim, Ibrahim H.
    El-Shishtawy, Reda M.
    ELECTRONIC JOURNAL OF BIOTECHNOLOGY, 2017, 27 : 84 - 90
  • [48] Globulin Conjugated Fe3O4 Nanoparticles for Magnetic Hyperthermia
    Kalidasan, Viveka
    Ding, Jun
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON BIOMEDICAL AND BIOLOGICAL ENGINEERING, 2016, : 172 - 176
  • [49] Surface Controlled Magnetic Properties of Fe3O4 Nanoparticles
    Mohapatra, Jeotikanta
    Mitra, Arijit
    Bahadur, D.
    Aslam, M.
    SOLID STATE PHYSICS, VOL 57, 2013, 1512 : 318 - 319
  • [50] Interface Phenomena and Magnetic Hyperthemia of Fe3O4 Nanoparticles
    Alves, Mirela B.
    Almeida, Adriele A.
    Tancredi, Pablo
    Muraca, Diego
    2024 IEEE INTERNATIONAL MAGNETIC CONFERENCE-SHORT PAPERS, INTERMAG SHORT PAPERS, 2024,