A First-Principles Investigation of Monolayer MoS2 Doped with Mn and V as an Excellent NO2 Sensor with High Selectivity

被引:1
|
作者
Tian, Lei [1 ]
Hu, Jiahuan [1 ]
He, Chengyu [1 ]
Ling, Fei [2 ]
机构
[1] Xian Univ Posts & Telecommun, Xian 710121, Peoples R China
[2] Shaanxi Polytech Inst, Sch Civil Engn, Xianyang 712000, Peoples R China
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2024年 / 261卷 / 06期
关键词
first-principles calculations; Mn-doped; MoS2; monolayers; NO2; sensors; V-doped; AIR-POLLUTION; GAS; ADSORPTION; HETEROSTRUCTURES; PERFORMANCE; IMPROVEMENT; NANOSHEETS; SOLIDS; AREA; AU;
D O I
10.1002/pssb.202300500
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
This article conducts a comprehensive investigation into the adsorption properties of both pristine MoS2 monolayers and those doped with Mn and V, wherein these dopants replace Mo atoms. By the first-principles calculations, the research reveals a noteworthy reduction in the adsorption energy of NO2 on Mn-doped and V-doped MoS2 monolayers compared to pure MoS2 monolayers. Specifically, at the most favorable adsorption site, the adsorption energy decreases from -5.83 to 5.908 eV for Mn-doped MoS2 and from -5.58 to -6.17 eV for V-doped MoS2. Furthermore, computations of the band structure, work function, and charge density difference highlight a significant degree of charge transfer and coexistence of electrons within these systems. Additionally, post-adsorption of NO2 molecules, a distinct shift in the density of states (DOS) toward lower energy states is observed at the adsorption sites of both MoS2/Mn and MoS2/V monolayers, underscoring their exceptional sensitivity in detecting NO2. In summary, these results demonstrate the substantial potential of Mn-doped and V-doped MoS2 monolayers as highly sensitive materials for NO2 detection. Their lower adsorption energies and noteworthy shifts in DOS following NO2 adsorption enhance their capabilities as NO2 sensors.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Structural and Electronic Properties in Monolayer MoS2 with Various Vacancies: First-Principles Calculations
    Bai, Zhi-Xin
    Lu, Fan-Jin
    Liu, Qi-Jun
    Liu, Zheng-Tang
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2024, 79 (04) : 500 - 506
  • [42] NO reduction over an Al-embedded MoS2 monolayer: a first-principles study
    Esrafili, Mehdi D.
    Heydari, Safa
    RSC ADVANCES, 2019, 9 (67) : 38973 - 38981
  • [43] First-principles study of molecule adsorption on Ni-decorated monolayer MoS2
    Barzegar, Maryam
    Berahman, Masoud
    Asgari, Reza
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2019, 18 (03) : 826 - 835
  • [44] First-principles study of transition-metal atoms adsorption on MoS2 monolayer
    Wang, Yanzong
    Wang, Baolin
    Huang, Rui
    Gao, Benling
    Kong, Fanjie
    Zhang, Qinfang
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2014, 63 : 276 - 282
  • [45] NO gas adsorption properties of MoS2 from monolayer to trilayer: a first-principles study
    Wang, Zhaohua
    Zhang, Yanni
    Ren, Yanbing
    Wang, Miaomiao
    Zhang, Zhiyong
    Zhao, Wu
    Yan, Junfeng
    Zhai, Chunxue
    Yun, Jiangni
    MATERIALS RESEARCH EXPRESS, 2021, 8 (01)
  • [46] The first-principles study on the halogen-doped graphene/MoS2 heterojunction
    Fu, Siyao
    Wang, Dawei
    Ma, Zhuang
    Liu, Guotan
    Zhu, Xiaoshuo
    Yan, Mufu
    Fu, Yudong
    SOLID STATE COMMUNICATIONS, 2021, 334
  • [47] Photogalvanic Effect in Nitrogen-Doped Monolayer MoS2 from First Principles
    Wen-Ming Luo
    Zhi-Gang Shao
    Mou Yang
    Nanoscale Research Letters, 2019, 14
  • [48] Photogalvanic Effect in Nitrogen-Doped Monolayer MoS2 from First Principles
    Luo, Wen-Ming
    Shao, Zhi-Gang
    Yang, Mou
    NANOSCALE RESEARCH LETTERS, 2019, 14 (01):
  • [49] Photogalvanic effect in chromium-doped monolayer MoS2 from first principles
    Liu, Ping -Ping
    Shao, Zhi-Gang
    Luo, Wen -Ming
    Yang, Mou
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2021, 128
  • [50] Understanding ferromagnetism in Ni-doped MoS2 monolayer from first principles
    Han, Xiaoping
    Benkraouda, Maamar
    Qamhieh, Naser
    Amrane, Noureddine
    CHEMICAL PHYSICS, 2020, 528