On some central operators for loop Lie superalgebras

被引:0
|
作者
Mukherjee, Sudipta [1 ]
Pattanayak, Santosha [1 ]
Sharma, Sachin S. [1 ]
机构
[1] Indian Inst Technol Kanpur, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
关键词
Lie supergroups; Super Harish-Chandra pairs; Lie superalgebras; CLASSICAL INVARIANT-THEORY; ANALOG; REPRESENTATIONS; MODULES;
D O I
10.1016/j.jpaa.2024.107630
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let g be either a basic classical Lie superalgebra or gl(m, n) over the field of complex numbers C. For any associative, commutative, and finitely generated algebra A with unity, we consider the loop Lie superalgebra g (R) A. In [11], Rao defined a class of central operators for g (R) A and conjectured that these central operators, which generalizes the classical Gelfand invariants, generate the algebra U(g (R) A)g for g = gl(m, n). In this article we prove this conjecture and we also give a spanning set for U(g (R) A)G where g is the orthosymplectic Lie superalgebra and G is the corresponding orthosymplectic supergroup. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Generalized Casimir operators for loop Lie superalgebras
    Das, Abhishek
    Pattanayak, Santosha
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2025,
  • [2] Lie Superalgebras of Differential Operators
    Grabowski, Janusz
    Kotov, Alexei
    Poncin, Norbert
    JOURNAL OF LIE THEORY, 2013, 23 (01) : 35 - 54
  • [3] Cohomolgies of Rota-Baxter operators on Lie superalgebras and some classifications on Witt superalgebras
    Amor, R.
    Athmouni, N.
    Ben Hassine, A.
    Chtioui, T.
    Mabrouk, S.
    JOURNAL OF GEOMETRY AND PHYSICS, 2023, 185
  • [4] Generalized Casimir operators for Lie superalgebras
    Rao, S. Eswara
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (10)
  • [5] Dirac Operators on Quadratic Lie Superalgebras
    Yi Fang KANG
    Zhi Qi CHEN
    ActaMathematicaSinica,EnglishSeries, 2021, (08) : 1229 - 1253
  • [6] Dirac Operators on Quadratic Lie Superalgebras
    Kang, Yi Fang
    Chen, Zhi Qi
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (08) : 1229 - 1253
  • [7] Dirac Operators on Quadratic Lie Superalgebras
    Yi Fang Kang
    Zhi Qi Chen
    Acta Mathematica Sinica, English Series, 2021, 37 : 1229 - 1253
  • [8] Central extensions of Lie superalgebras
    Iohara, K
    Koga, Y
    COMMENTARII MATHEMATICI HELVETICI, 2001, 76 (01) : 110 - 154
  • [9] Some complete Lie superalgebras
    Wang, LY
    Meng, DJ
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 369 (SUPP.) : 339 - 349
  • [10] SUPER HAMILTONIAN OPERATORS AND LIE-SUPERALGEBRAS
    VANDERLENDE, ED
    PIJLS, HGJ
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1990, 1 (02): : 221 - 242