Impact analysis of meteorological variables on PM2.5 pollution in the most polluted cities in China

被引:8
|
作者
Wang, Ju [1 ,2 ,3 ]
Han, Jiatong [1 ]
Li, Tongnan [1 ]
Wu, Tong [4 ]
Fang, Chunsheng [1 ,2 ,3 ]
机构
[1] Jilin Univ, Coll New Energy & Environm, Changchun 130012, Peoples R China
[2] Jilin Univ, Key Lab Groundwater Resources & Environm, Minist Educ, Changchun 130012, Peoples R China
[3] Jilin Univ, Jilin Prov Key Lab Water Resources & Environm, Changchun 130012, Peoples R China
[4] Shenyang Engn Co, China Coal Technol & Engn Grp, Shenyang, Liaoning, Peoples R China
关键词
Meteorological variable; WRF-CMAQ; PM2.5; Impact analysis; North China Plain; PARTICULATE MATTER PM2.5; SEVERE HAZE POLLUTION; TIANJIN-HEBEI REGION; AIR-POLLUTION; PERFORMANCE EVALUATION; INTER-CITY; CLIMATE; QUALITY; MODEL; SENSITIVITY;
D O I
10.1016/j.heliyon.2023.e17609
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With the continuous promotion of urbanization in China, air pollution problems have become increasingly prominent in recent years. Various factors, such as emissions, meteorology, and physical and chemical reactions, jointly affect the severity of PM2.5 pollution to a large extent. This study selected five meteorological variables (planetary boundary layer height (PBLH), wind speed (WS), temperature(T), water vapor mixing ratio(Q), and precipitation (PCP)) for perturbation, and 21 different scenarios were set up. In this study, the effects of changes in a single meteorological variable on the pollutants produced in the area were represented by subtracting the baseline scenario (i.e., without perturbation of meteorological variables) simulated in January 2017 separately from each post-disturbance scenario. The results showed that Handan (HD) has the highest annual mean PM2.5 concentration of 85.75 & mu;g/m3 in 2017, while all cities in study area exceeded the secondary concentration limit of urban atmospheric particulate matter. The correlation coefficient (R) between the simulation values of models and the actual monitoring values ranges from 0.41 to 0.74, indicating good model performance and acceptable simulation errors. PBLH (& PLUSMN;10%-& PLUSMN;20%), WS(& PLUSMN;10%-& PLUSMN;20%), and PCP(& PLUSMN;10%-& PLUSMN;20%) all showed a single adverse effect among the five meteorological variables, meaning that a reduction in these three factors led to an increase in PM2.5 concentrations. However, T (& PLUSMN;1 K-& PLUSMN;1.5 K) and Q (& PLUSMN;10%& PLUSMN;20%) could indicate a positive impact under certain conditions. From the sensitivity calculations of single meteorological variables, it is clear that WS, PBLH, and PCP show a highly linear trend in all cities at the 0.01 level of significance. The hypothesis that T changes linearly in 10 cities in the study area is valid, while for Q, the hypothesis that Q changes linearly only occurs in Shijiazhuang and Baoding. When different meteorological variables are disturbed, there are significant spatial differences in the main affected areas of PM2.5 concentrations. By discussing the impact of meteorological variable disturbance on air quality in critically polluted cities in China, this study identified the meteorological variables that can substantially affect PM2.5 concentration. The more complex T and Q should be considered when formulating relevant emission measures.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Correlation of PM2.5 and meteorological variables in Ontario cities: statistical downscaling method coupled with artificial neural network
    Su, X.
    Gough, W.
    Shen, Q.
    AIR POLLUTION XXIV, 2016, 207 : 215 - 226
  • [42] Health loss attributed to PM2.5 pollution in China's cities: Economic impact, annual change and reduction potential
    Guan, Yang
    Kang, Lei
    Wang, Yi
    Zhang, Nan-Nan
    Ju, Mei-Ting
    JOURNAL OF CLEANER PRODUCTION, 2019, 217 : 284 - 294
  • [43] Response of PM2.5 pollution to land use in China
    Lu, Debin
    Xu, Jianhua
    Yue, Wenze
    Mao, Wanliu
    Yang, Dongyang
    Wang, Jinzhu
    JOURNAL OF CLEANER PRODUCTION, 2020, 244
  • [44] Effect of PM2.5 pollution on perinatal mortality in China
    Li, Guangqin
    Li, Lingyu
    Liu, Dan
    Qin, Jiahong
    Zhu, Hongjun
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [45] Death Effects Assessment of PM2.5 Pollution in China
    Xie, Zhixiang
    Qin, Yaochen
    Zhang, Lijun
    Zhang, Rongrong
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2018, 27 (04): : 1813 - 1821
  • [46] Effect of PM2.5 pollution on perinatal mortality in China
    Guangqin Li
    Lingyu Li
    Dan Liu
    Jiahong Qin
    Hongjun Zhu
    Scientific Reports, 11
  • [47] Impacts of shipping emissions on PM2.5 pollution in China
    Lv, Zhaofeng
    Liu, Huan
    Ying, Qi
    Fu, Mingliang
    Meng, Zhihang
    Wang, Yue
    Wei, Wei
    Gong, Huiming
    He, Kebin
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (21) : 15811 - 15824
  • [48] Dual effects of environmental regulation on PM2.5 pollution: evidence from 280 cities in China
    Wang, Huiping
    Li, Jiaxin
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (34) : 47213 - 47226
  • [49] Meteorological and chemical impacts on PM2.5 during a haze episode in a heavily polluted basin city of eastern China
    Bao, Zhier
    Chen, Linghong
    Li, Kangwei
    Han, Lixia
    Wu, Xuecheng
    Gao, Xiang
    Azzi, Merched
    Cen, Kefa
    ENVIRONMENTAL POLLUTION, 2019, 250 : 520 - 529
  • [50] Characteristics of Particulate Pollution (PM2.5 and PM10) and Their Spacescale-Dependent Relationships with Meteorological Elements in China
    Li, Xiaodong
    Chen, Xuwu
    Yuan, Xingzhong
    Zeng, Guangming
    Leon, Tomas
    Liang, Jie
    Chen, Gaojie
    Yuan, Xinliang
    SUSTAINABILITY, 2017, 9 (12)