Minimal energy for geometrically nonlinear elastic inclusions in two dimensions

被引:3
|
作者
Akramov, Ibrokhimbek [1 ]
Knuepfer, Hans [1 ]
Kruzik, Martin [2 ]
Rueland, Angkana [1 ]
机构
[1] Heidelberg Univ, Inst Appl Math, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
[2] Czech Acad Sci, Inst Informat Theory & Automat, Pod Vodarenskou Vezi 4, CZ-18208 Prague 8, Czech Republic
关键词
Two-well problem; nonlinear elasticity; rigidity estimate; ISOPERIMETRIC PROBLEM; RIGIDITY RESULT; NUCLEATION BARRIERS; PHASE-TRANSITION; LINEAR-THEORY; CRYSTALS; SHAPE; QUASICONVEXITY; APPROXIMATION; MARTENSITE;
D O I
10.1017/prm.2023.36
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with a variant of the isoperimetric problem, which in our setting arises in a geometrically nonlinear two-well problem in elasticity. More precisely, we investigate the optimal scaling of the energy of an elastic inclusion of a fixed volume for which the energy is determined by a surface and an (anisotropic) elastic contribution. Following ideas from Conti and Schweizer (Commun. Pure Appl. Math. 59 (2006), 830-868) and Knupfer and Kohn (Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci. 467 (2011), 695-717), we derive the lower scaling bound by invoking a two-well rigidity argument and a covering result. The upper bound follows from a well-known construction for a lens-shaped elastic inclusion.
引用
收藏
页码:769 / 792
页数:24
相关论文
共 50 条
  • [41] A discrete, geometrically exact method for simulating nonlinear, elastic and inelastic beams
    Lestringant, Claire
    Audoly, Basile
    Kochmann, Dennis M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 361
  • [42] Geometrically nonlinear free vibration of FG-GPLRC circular plate on the nonlinear elastic foundation
    Javani, M.
    Kiani, Y.
    Eslami, M. R.
    COMPOSITE STRUCTURES, 2021, 261
  • [43] Wave Occurrences Mathematical Modeling in Two Geometrically Nonlinear Elastic Coaxial Cylindrical Shells, Containing Viscous Incompressible Liquid
    Blinkov, Yu A.
    Mesyanzhin, A., V
    Mogilevich, L., I
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2016, 16 (02): : 184 - 197
  • [44] Vibration suppression of a geometrically nonlinear beam with boundary inertial nonlinear energy sinks
    Zhang, Zhen
    Gao, Zhi-Tong
    Fang, Bo
    Zhang, Ye-Wei
    NONLINEAR DYNAMICS, 2022, 109 (03) : 1259 - 1275
  • [45] Vibration suppression of a geometrically nonlinear beam with boundary inertial nonlinear energy sinks
    Zhen Zhang
    Zhi-Tong Gao
    Bo Fang
    Ye-Wei Zhang
    Nonlinear Dynamics, 2022, 109 : 1259 - 1275
  • [46] Dynamics analysis and parameter optimization of a nonlinear energy sink with geometrically nonlinear inerters
    Chu, Jiawen
    Lou, Jingjun
    Chai, Kai
    Li, Ronghua
    NONLINEAR DYNAMICS, 2024, 112 (16) : 13863 - 13873
  • [47] ELASTIC ENERGY AND SHAPE OF NEW PHASE COHERENT INCLUSIONS
    KHACHATURYAN, AG
    HAIRAPETYAN, VN
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 1973, 57 (02): : 801 - 813
  • [48] ELASTIC ENERGY OF LONG CYLINDRICAL INCLUSIONS IN CUBIC METALS
    CHOU, YT
    YANG, HC
    JOM-JOURNAL OF METALS, 1976, 28 (12): : A39 - A39
  • [49] Chaotic Analysis of the Geometrically Nonlinear Nonlocal Elastic Single-Walled Carbon Nanotubes on Elastic Medium
    Kuo, Yong-Lin
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (03) : 2352 - 2360
  • [50] Nonlinear thermal instability in two dimensions
    Steele, CDC
    Ibáñez, MH
    PHYSICS OF PLASMAS, 1999, 6 (08) : 3086 - 3096