PulDi-COVID: Chronic obstructive pulmonary (lung) diseases with COVID-19 classification using ensemble deep convolutional neural network from chest X-ray images to minimize severity and mortality rates

被引:45
|
作者
Bhosale, Yogesh H. [1 ]
Patnaik, K. Sridhar [1 ]
机构
[1] Birla Inst Technol, Dept Comp Sci & Engn, Ranchi 835215, India
关键词
Biomedical engineering; Convolution neural networks (CNN); Ensemble deep learning; Chronic Obstructive Pulmonary Diseases  (COPD); COVID-19; Diagnosis & Classification; Transfer learning; Medical Imaging;
D O I
10.1016/j.bspc.2022.104445
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Background and Objective: In the current COVID-19 outbreak, efficient testing of COVID-19 individuals has proven vital to limiting and arresting the disease's accelerated spread globally. It has been observed that the severity and mortality ratio of COVID-19 affected patients is at greater risk because of chronic pulmonary diseases. This study looks at radiographic examinations exploiting chest X-ray images (CXI), which have become one of the utmost feasible assessment approaches for pulmonary disorders, including COVID-19. Deep Learning(DL) remains an excellent image classification method and framework; research has been conducted to predict pulmonary dis-eases with COVID-19 instances by developing DL classifiers with nine class CXI. However, a few claim to have strong prediction results; because of noisy and small data, their recommended DL strategies may suffer from significant deviation and generality failures.Methods: Therefore, a unique CNN model(PulDi-COVID) for detecting nine diseases (atelectasis, bacterial-pneumonia, cardiomegaly, covid19, effusion, infiltration, no-finding, pneumothorax, viral-Pneumonia) using CXI has been proposed using the SSE algorithm. Several transfer-learning models: VGG16, ResNet50, VGG19, DenseNet201, MobileNetV2, NASNetMobile, ResNet152V2, DenseNet169 are trained on CXI of chronic lung diseases and COVID-19 instances. Given that the proposed thirteen SSE ensemble models solved DL's constraints by making predictions with different classifiers rather than a single, we present PulDi-COVID, an ensemble DL model that combines DL with ensemble learning. The PulDi-COVID framework is created by incorporating various snapshots of DL models, which have spearheaded chronic lung diseases with COVID-19 cases identifi-cation process with a deep neural network produced CXI by applying a suggested SSE method. That is familiar with the idea of various DL perceptions on different classes.Results: PulDi-COVID findings were compared to thirteen existing studies for nine-class classification using COVID-19. Test results reveal that PulDi-COVID offers impressive outcomes for chronic diseases with COVID-19 identification with a 99.70% accuracy, 98.68% precision, 98.67% recall, 98.67% F1 score, lowest 12 CXIs zero-one loss, 99.24% AUC-ROC score, and lowest 1.33% error rate. Overall test results are superior to the existing Convolutional Neural Network(CNN). To the best of our knowledge, the observed results for nine-class classi-fication are significantly superior to the state-of-the-art approaches employed for COVID-19 detection. Furthermore, the CXI that we used to assess our algorithm is one of the larger datasets for COVID detection with pulmonary diseases.Conclusion: The empirical findings of our suggested approach PulDi-COVID show that it outperforms previously developed methods. The suggested SSE method with PulDi-COVID can effectively fulfill the COVID-19 speedy detection needs with different lung diseases for physicians to minimize patient severity and mortality.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] COVID-19 detection using chest X-ray images based on a developed deep neural network
    Mousavi, Zohreh
    Shahini, Nahal
    Sheykhivand, Sobhan
    Mojtahedi, Sina
    Arshadi, Afrooz
    SLAS TECHNOLOGY, 2022, 27 (01): : 63 - 75
  • [42] Fast Hybrid Deep Neural Network for Diagnosis of COVID-19 using Chest X-Ray Images
    Ali, Hussein Ahmed
    Zghal, Nadia Smaoui
    Hariri, Walid
    Ben Aissa, Dalenda
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (03) : 553 - 564
  • [43] Hybrid deep neural network for automatic detection of COVID-19 using chest x-ray images
    Acharya, Upendra Kumar
    Ali, Mohammad Taha
    Ahmed, Mohd Kaif
    Siddiqui, Mohd Tabish
    Gupta, Harsh
    Kumar, Sandeep
    Mishra, Ajey Shakti
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2023, 33 (04) : 1129 - 1143
  • [44] Y Covid-19 Classification Using Deep Learning in Chest X-Ray Images
    Karhan, Zehra
    Akal, Fuat
    2020 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2020,
  • [45] Deep Learning Algorithm for COVID-19 Classification Using Chest X-Ray Images
    Sharmila, V. J.
    Florinabel, Jemi D.
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2021, 2021
  • [46] COVID-19 and pneumonia diagnosis from chest X-ray images using convolutional neural networks
    Muhab Hariri
    Ercan Avşar
    Network Modeling Analysis in Health Informatics and Bioinformatics, 12
  • [47] COVID-19 and pneumonia diagnosis from chest X-ray images using convolutional neural networks
    Hariri, Muhab
    Avsar, Ercan
    NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2023, 12 (01):
  • [48] Covid-19 detection from X-ray images using Customized Convolutional Neural Network
    Shafiq, Shahzad
    Ali, Luqman
    Khan, Wasif
    Ullah, Rooh
    Khan, Tanveer Ahmed
    Alnajjar, Fady
    PROCEEDINGS OF 2ND IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (ICAI 2022), 2022, : 7 - 12
  • [49] DRESCNN: Deep RESNET Convolutional Neural Network Based Classification of X-Ray Images for Detection of COVID-19
    V. Bag, Vipul.
    Gaikwad, V. D.
    Patil, Mithun B.
    Swami, Kedar S.
    Abhang, Sandip P.
    Antad, Sonali M.
    Joshi-Bag, Shradha
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (02) : 1415 - 1425
  • [50] ChestX-Ray6: Prediction of multiple diseases including COVID-19 from chest X-ray images using convolutional neural network
    Nahiduzzaman, Md.
    Islam, Md. Rabiul
    Hassan, Rakibul
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 211