Analyses and optimization of the CFETR power conversion system with a new supercritical CO2 Brayton cycle

被引:2
|
作者
Zhao, Pinghui [1 ]
Chen, Zhansheng [2 ]
Jin, Yixuan [2 ]
Wan, Teng [2 ]
Wang, Xiaohu [2 ]
Liu, Ke [2 ]
Lei, Mingzhun [1 ]
Li, Yuanjie [2 ]
Peng, Changhong [2 ]
机构
[1] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[2] Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
supercritical CO2 Brayton cycle; CFETR; exergy; exergoeconomic; multi-criteria optimization; THERMAL-ENERGY STORAGE; FUSION POWER; THERMODYNAMIC ANALYSIS; HELIUM; DESIGN;
D O I
10.1088/1741-4326/acbe0d
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper, the Chinese Fusion Engineering Testing Reactor (CFETR) power conversion system, with a supercritical CO2 (SCO2) Brayton cycle, is designed, analyzed and optimized. Considering the pulse operation of the reactor, a heat storage loop with high temperature molten salt and low temperature concrete is introduced. Based on the parameters of the first cooling loop, the CFETR power conversion loop is designed and studied. A new SCO2 Brayton cycle for the CFETR dual heat sources, blanket and divertor, is developed and optimized using a genetic algorithm. Compared to other simple and recompression cycles, it is shown that the new SCO2 Brayton cycle combines maximum thermal efficiency with simplicity. Exergy analyses are carried out and show that the exergy destruction rates of turbine and heat exchangers between different loops are the largest due to the large turbine power and the large temperature difference. The exergoeconomic analyses show that the fusion reactor accounts for the main cost, which is the key to the economy of fusion power generation. The following sensitivity analyses show that the hot molten salt temperature has a major influence on the system performance. Finally, several multi-criteria optimization algorithms are introduced to simultaneously optimize the three fitness functions, the cycle thermal efficiency, the system exergy efficiency and the total system product unit cost. It is found that the maximum thermal efficiency, the maximum exergy efficiency and the lowest total system product unit cost can be obtained almost simultaneously for the new CFETR power conversion system, and this optimal operation scheme is presented.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Design and optimization of CO2 pressurization system integrated with a supercritical CO2 power cycle for the CO2 capture and storage system
    Muhammad, Hafiz Ali
    Lee, Gilbong
    Cho, Junhyun
    Bhatti, Umair Hassan
    Baik, Young-Jin
    Lee, Beomjoon
    ENERGY CONVERSION AND MANAGEMENT, 2019, 195 : 609 - 619
  • [32] PERFORMANCE CHARACTERISTICS OF AN OPERATING SUPERCRITICAL CO2 BRAYTON CYCLE
    Conboy, Thomas
    Wright, Steven
    Pasch, James
    Fleming, Darryn
    Rochau, Gary
    Fuller, Robert
    PROCEEDINGS OF THE ASME TURBO EXPO 2012, VOL 5, 2012, : 941 - 952
  • [33] Working Fluid Model for Supercritical Co2 Brayton Cycle
    Milewski, Jaroslaw
    Wolowicz, Marcin
    Ziembicki, Gabriel
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [34] Researchers Develop Supercritical CO2 Brayton Cycle Turbines
    不详
    POWER, 2011, 155 (05) : 12 - +
  • [35] Research on the Development of the Supercritical CO2 Dual Brayton Cycle
    Baik, Young-Jin
    Na, Sun Ik
    Cho, Junhyun
    Shin, Hyung-Ki
    Lee, Gilbong
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2016, 40 (10) : 673 - 679
  • [36] Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle
    Conboy, Thomas
    Wright, Steven
    Pasch, James
    Fleming, Darryn
    Rochau, Gary
    Fuller, Robert
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2012, 134 (11):
  • [37] THERMODYNAMIC PERFORMANCE ANALYSIS OF SUPERCRITICAL CO2 BRAYTON CYCLE
    Yang, Xiaoping
    Cai, Zhuodi
    THERMAL SCIENCE, 2021, 25 (05): : 3933 - 3943
  • [38] THERMAL ENERGY STORAGE FOR THE SUPERCRITICAL CO2 BRAYTON CYCLE
    Bueno, P. C.
    Bates, L.
    Anderson, R.
    Bindra, H.
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2015, VOL 9, 2015,
  • [39] Off-design performance of a supercritical CO2 Brayton cycle integrated with a solar power tower system
    Yang, Jingze
    Yang, Zhen
    Duan, Yuanyuan
    ENERGY, 2020, 201
  • [40] A multivariable optimization of a Brayton power cycle operating with CO2 as working fluid
    Battisti, Felipe G.
    Cardemil, Jose M.
    da Silva, Alexandre K.
    ENERGY, 2016, 112 : 908 - 916