Design and development of a deep learning model for brain abnormality detection using MRI

被引:0
|
作者
Potadar, Mahesh P. [1 ]
Holambe, Raghunath S. [2 ]
Chile, Rajan H. [2 ]
机构
[1] PVGs Coll Engn & Technol & GKPIOM, Elect & Telecommun Engn, Pune, India
[2] Swami Ramanand Teerth Univ, SGGS Inst Engn & Technol, Dept Instrumentat Engn, Nanded, India
来源
COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION | 2024年 / 12卷 / 01期
关键词
Brain abnormality; MRI image; brain tumour; deep convolutional neural network; sonar emigration optimisation; TP; feature extraction; segmentation; feature concatenation; machine learning; CLASSIFICATION; NETWORKS; MACHINE;
D O I
10.1080/21681163.2023.2250878
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The research aims to develop a DL model for the detection of abnormalities in MRI images that works as an automated and accurate detection system that assists health care professionals in diagnosing the abnormalities in brain. In this research, an advanced brain abnormality prediction model associated with the deep Convolutional Neural Network (CNN) is implemented. The main advantage of this research is the proposed sonar emigration optimization that uses sonaring behaviour for predicting the position of the target with an improved convergence rate. Additionally, intensity, texture and shape-based features extract significant features for enhancing the prediction results. The sonar emigration-based deep CNN-based classifier attained the values of 95.46%, 95.72%, 94.56%, and 96.39% for dataset-1 during TP 90 for accuracy, sensitivity, specificity, and F1 score. For dataset-2 the proposed method attained the values of 94.15%,94.40%,93.25% and 95.07%, during the TP 90 while measuring the metrics, which is quite more efficient than other methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Detection of brain tumors from MRI images base on deep learning using hybrid model CNN and NADE
    Hashemzehi, Raheleh
    Mahdavi, Seyyed Javad Seyyed
    Kheirabadi, Maryam
    Kamel, Seyed Reza
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2020, 40 (03) : 1225 - 1232
  • [22] Initial Experience in MRI-Based Brain Metastases Detection Using Deep Learning
    Teruel, J.
    Bernstein, K.
    Galavis, P.
    Spuhler, K.
    Silverman, J.
    Kondziolka, D.
    Osterman, K.
    MEDICAL PHYSICS, 2020, 47 (06) : E629 - E629
  • [23] Deep-Learning Detection of Cancer Metastases to the Brain on MRI
    Zhang, Min
    Young, Geoffrey S.
    Chen, Huai
    Li, Jing
    Qin, Lei
    McFaline-Figueroa, J. Ricardo
    Reardon, David A.
    Cao, Xinhua
    Wu, Xian
    Xu, Xiaoyin
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 52 (04) : 1227 - 1236
  • [24] Automated abnormality detection in lower extremity radiographs using deep learning
    Varma, Maya
    Lu, Mandy
    Gardner, Rachel
    Dunnmon, Jared
    Khandwala, Nishith
    Rajpurkar, Pranav
    Long, Jin
    Beaulieu, Christopher
    Shpanskaya, Katie
    Li Fei-Fei
    Lungren, Matthew P.
    Patel, Bhavik N.
    NATURE MACHINE INTELLIGENCE, 2019, 1 (12) : 578 - 583
  • [25] Automated abnormality detection in lower extremity radiographs using deep learning
    Maya Varma
    Mandy Lu
    Rachel Gardner
    Jared Dunnmon
    Nishith Khandwala
    Pranav Rajpurkar
    Jin Long
    Christopher Beaulieu
    Katie Shpanskaya
    Li Fei-Fei
    Matthew P. Lungren
    Bhavik N. Patel
    Nature Machine Intelligence, 2019, 1 : 578 - 583
  • [26] MACHINE SETUP ABNORMALITY DETECTION USING MACHINE VISION AND DEEP LEARNING
    Choudhari, Sahil J.
    Singh, Swarit Anand
    Kumar, Aitha Sudheer
    Desai, K. A.
    PROCEEDINGS OF ASME 2022 17TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, MSEC2022, VOL 1, 2022,
  • [27] Design and Development of Hypertuned Deep learning Frameworks for Detection and Severity Grading of Brain Tumor using Medical Brain MR images
    Bhardwaj, Neha
    Sood, Meenakshi
    Gill, Sandeep Singh
    CURRENT MEDICAL IMAGING, 2024, 20
  • [28] MRI detection of brain abnormality in sickle cell disease
    Stotesbury, Hanne
    Kawadler, Jamie Michelle
    Saunders, Dawn Elizabeth
    Kirkham, Fenella Jane
    EXPERT REVIEW OF HEMATOLOGY, 2021, 14 (05) : 473 - 491
  • [29] Symmetry-Based Brain Abnormality Detection Using Machine Learning
    Al-Azawi, Mohammad A. N.
    INTELIGENCIA ARTIFICIAL-IBEROAMERICAL JOURNAL OF ARTIFICIAL INTELLIGENCE, 2021, 24 (68): : 138 - 150
  • [30] Detection of Brain Tumour Using Deep Learning
    Ahmed, Waqar
    Konur, Savas
    ARTIFICIAL INTELLIGENCE XXXVIII, 2021, 13101 : 133 - 138