Electronic effects on the radiation damage in high-entropy alloys

被引:17
|
作者
Orhan, Okan K. [1 ]
Hendy, Mohamed [1 ]
Ponga, Mauricio [1 ]
机构
[1] Univ British Columbia, Dept Mech Engn, 2054-6250 Appl Sci Lane, Vancouver, BC V6T 1Z4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
High-entropy alloys; Radiation-damage resistance; Density-functional theory; Molecular dynamics; MOLECULAR-DYNAMICS SIMULATIONS; GRADIENT APPROXIMATION; MECHANICAL-PROPERTIES; THERMAL-CONDUCTIVITY; 2-TEMPERATURE MODEL; WEAR-RESISTANCE; HEAT-CAPACITY; NI; MICROSTRUCTURE; PHONON;
D O I
10.1016/j.actamat.2022.118511
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-entropy alloys (HEAs) are exceptional candidates for radiation-resistant materials due to their complex local chemical environment and slow defect migration. Despite commonly overlooked, electronic effects on defects evolution in radiation environments also play a crucial role by dissipating excess energy through electron-phonon coupling and electronic heat conduction during cascade events. We present a systematic study on electronic properties in random-solid solutions (RSS) in four and five principal elements HEAs and their effect on defect formation, clustering, and recombination. Electronic properties, including electron-phonon coupling factor (Ge_ph), the electronic specific heat (Ce), and the electronic thermal conductivity (kappa e), are computed within first-principles calculations. Using the two-temperature molecular dynamics simulations, we show that the electron-phonon coupling factor and electronic specific heat play a critical role in Frenkel pairs formation. Specifically, the electron-phonon coupling factor quickly dissipates the kinetic energy during primary knock-on atom events via plasmon excitations and is subsequently dissipated via the free-electrons conduction. We show that these effects are more critical than the elastic distortion effects produced by the atomic mismatch. Of tremendous interest, we show that including lighter elements helps to increase Ge_ph suggesting the possibility to improve radiation resistance in HEA through optimal composition.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Progress in High-Entropy Alloys
    Chuan Zhang
    Michael C. Gao
    Shih-Kang Lin
    JOM, 2019, 71 : 3417 - 3418
  • [32] Progress in High-Entropy Alloys
    Zhang, Chuan
    Gao, Michael C.
    Lin, Shih-Kang
    JOM, 2019, 71 (10) : 3417 - 3418
  • [33] ForewordSymposium on High-Entropy Alloys
    Metallurgical and Materials Transactions A, 2015, 46 : 1467 - 1467
  • [34] Progress in High-Entropy Alloys
    Michael C. Gao
    JOM, 2013, 65 : 1749 - 1750
  • [35] ForewordSymposium on High-Entropy Alloys
    Peter K. Liaw
    Gongyao Wang
    Michael C. Gao
    Suveen N. Mathaudhu
    Metallurgical and Materials Transactions A, 2014, 45 : 179 - 179
  • [36] On the diffusion in high-entropy alloys
    Beke, D. L.
    Erdelyi, G.
    MATERIALS LETTERS, 2016, 164 : 111 - 113
  • [37] Hexagonal High-entropy Alloys
    Feuerbacher, Michael
    Heidelmann, Markus
    Thomas, Carsten
    MATERIALS RESEARCH LETTERS, 2015, 3 (01): : 1 - 6
  • [38] Design of High-Entropy Alloys
    Stepanov, Nikita
    Zherebtsov, Sergey
    METALS, 2022, 12 (06)
  • [39] Do "high-entropy alloys" have high entropy?
    Kucza, Witold
    JOURNAL OF MATERIALS RESEARCH, 2025,
  • [40] IMPACT ENERGY RELEASE AND DAMAGE CHARACTERISTICS OF TWO HIGH-ENTROPY ALLOYS
    Hou X.
    Xiong W.
    Chen H.
    Zhang X.
    Wang H.
    Dai L.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (09): : 2528 - 2540