We present here a novel approach to handling curved meshes in polytopal methods within the framework of hybrid high-order methods. The hybrid high-order method is a modern numerical scheme for the approximation of elliptic PDEs. An extension to curved meshes allows for the strong enforcement of boundary conditions on curved domains and for the capture of curved geometries that appear internally in the domain e.g. discontinuities in a diffusion coefficient. The method makes use of non-polynomial functions on the curved faces and does not require any mappings between reference elements/faces. Such an approach does not require the faces to be polynomial and has a strict upper bound on the number of degrees of freedom on a curved face for a given polynomial degree. Moreover, this approach of enriching the space of unknowns on the curved faces with non-polynomial functions should extend naturally to other polytopal methods. We show the method to be stable and consistent on curved meshes and derive optimal error estimates in L-2 and energy norms. We present numerical examples of the method on a domain with curved boundary and for a diffusion problem such that the diffusion tensor is discontinuous along a curved arc.
机构:
College of Aeronautics Science and Engineering, Beijing University of Aeronautics and AstronauticsCollege of Aeronautics Science and Engineering, Beijing University of Aeronautics and Astronautics
姜振华
阎超
论文数: 0引用数: 0
h-index: 0
机构:
College of Aeronautics Science and Engineering, Beijing University of Aeronautics and AstronauticsCollege of Aeronautics Science and Engineering, Beijing University of Aeronautics and Astronautics
阎超
于剑
论文数: 0引用数: 0
h-index: 0
机构:
College of Aeronautics Science and Engineering, Beijing University of Aeronautics and AstronauticsCollege of Aeronautics Science and Engineering, Beijing University of Aeronautics and Astronautics
机构:
Chinese Acad Sci, Univ Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R ChinaChinese Acad Sci, Univ Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R China
Zhang, Wensheng
Zhuang, Yuan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Univ Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R ChinaChinese Acad Sci, Univ Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R China
Zhuang, Yuan
Zhang, Lina
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Univ Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R ChinaChinese Acad Sci, Univ Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R China
机构:
Universidad de Concepción,Centro de Investigación en Ingeniería Matemática (CI2MA) and Departamento de Ingeniería MatemáticaUniversidad de Concepción,Centro de Investigación en Ingeniería Matemática (CI2MA) and Departamento de Ingeniería Matemática
Rommel Bustinza
Matteo Cicuttin
论文数: 0引用数: 0
h-index: 0
机构:
Politecnico di Torino,Dipartimento di Scienze Matematiche “G.L. Lagrange”Universidad de Concepción,Centro de Investigación en Ingeniería Matemática (CI2MA) and Departamento de Ingeniería Matemática
Matteo Cicuttin
Ariel L. Lombardi
论文数: 0引用数: 0
h-index: 0
机构:
Universidad Nacional de Rosario,Departamento de Matemática, Facultad de Ciencias Exactas, Ingeniería y AgrimensuraUniversidad de Concepción,Centro de Investigación en Ingeniería Matemática (CI2MA) and Departamento de Ingeniería Matemática