Performance of polygenic risk scores in screening, prediction, and risk stratification: secondary analysis of data in the Polygenic Score Catalog

被引:15
|
作者
Hingorani, Aroon D. [1 ,2 ,3 ,4 ]
Gratton, Jasmine [1 ,2 ]
Finan, Chris [1 ,2 ,3 ,4 ]
Schmidt, A. Floriaan [1 ,3 ,4 ,5 ]
Patel, Riyaz [1 ,2 ,3 ,4 ]
Sofat, Reecha [4 ,6 ]
Kuan, Valerie [1 ,2 ,3 ]
Langenberg, Claudia [7 ,8 ,9 ]
Hemingway, Harry [2 ,3 ,4 ,10 ]
Morris, Joan K. [11 ]
Wald, Nicholas J. [10 ,11 ]
机构
[1] UCL, Inst Cardiovasc Sci, London WC1E 6BT, England
[2] UCL, British Heart Fdn Res Accelerator, London, England
[3] Univ Coll London Hosp, Natl Inst Hlth Res, Biomed Res Ctr, London, England
[4] Hlth Data Res UK, London, England
[5] Univ Med Ctr Utrecht, Utrecht, Netherlands
[6] Univ Liverpool, Dept Pharmacol & Therapeut, Liverpool, Merseyside, England
[7] Queen Mary Univ London, Precis Healthcare Univ Res Inst, London, England
[8] Charite, Computat Med, Berlin Inst Hlth, Berlin, Germany
[9] Univ Cambridge, MRC Epidemiol Unit, Cambridge, England
[10] UCL, Inst Hlth Informat, London, England
[11] St Georges Univ London, Populat Hlth Res Inst, London, England
来源
BMJ MEDICINE | 2023年 / 2卷 / 01期
基金
英国科研创新办公室;
关键词
public health; preventive medicine;
D O I
10.1136/bmjmed-2023-000554
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective To clarify the performance of polygenic risk scores in population screening, individual risk prediction, and population risk stratification.Design Secondary analysis of data in the Polygenic Score Catalog.Setting Polygenic Score Catalog, April 2022. Secondary analysis of 3915 performance metric estimates for 926 polygenic risk scores for 310 diseases to generate estimates of performance in population screening, individual risk, and population risk stratification.Participants Individuals contributing to the published studies in the Polygenic Score Catalog.Main outcome measures Detection rate for a 5% false positive rate (DR5) and the population odds of becoming affected given a positive result; individual odds of becoming affected for a person with a particular polygenic score; and odds of becoming affected for groups of individuals in different portions of a polygenic risk score distribution. Coronary artery disease and breast cancer were used as illustrative examples.Results For performance in population screening, median DR5 for all polygenic risk scores and all diseases studied was 11% (interquartile range 8-18%). Median DR5 was 12% (9-19%) for polygenic risk scores for coronary artery disease and 10% (9-12%) for breast cancer. The population odds of becoming affected given a positive results were 1:8 for coronary artery disease and 1:21 for breast cancer, with background 10 year odds of 1:19 and 1:41, respectively, which are typical for these diseases at age 50. For individual risk prediction, the corresponding 10 year odds of becoming affected for individuals aged 50 with a polygenic risk score at the 2.5th, 25th, 75th, and 97.5th centiles were 1:54, 1:29, 1:15, and 1:8 for coronary artery disease and 1:91, 1:56, 1:34, and 1:21 for breast cancer. In terms of population risk stratification, at age 50, the risk of coronary artery disease was divided into five groups, with 10 year odds of 1:41 and 1:11 for the lowest and highest quintile groups, respectively. The 10 year odds was 1:7 for the upper 2.5% of the polygenic risk score distribution for coronary artery disease, a group that contributed 7% of cases. The corresponding estimates for breast cancer were 1:72 and 1:26 for the lowest and highest quintile groups, and 1:19 for the upper 2.5% of the distribution, which contributed 6% of cases.Conclusion Polygenic risk scores performed poorly in population screening, individual risk prediction, and population risk stratification. Strong claims about the effect of polygenic risk scores on healthcare seem to be disproportionate to their performance.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Polygenic risk scores for prediction of atrial fibrillation
    Kavousi, Maryam
    Ellinor, Patrick T. T.
    NETHERLANDS HEART JOURNAL, 2023, 31 (01) : 1 - 2
  • [22] Polygenic risk scores
    Brown, Matthew A.
    SEMINARS IN ARTHRITIS AND RHEUMATISM, 2024, 64
  • [23] A Polygenic Risk Score for Prostate Cancer Risk Prediction
    Schaffer, Kerry R.
    Shi, Mingjian
    Shelley, John P.
    Tosoian, Jeffrey J.
    Kachuri, Linda
    Witte, John S.
    Mosley, Jonathan D.
    JAMA INTERNAL MEDICINE, 2023, 183 (04) : 386 - 388
  • [24] A polygenic risk score for multiple myeloma risk prediction
    Canzian, Federico
    Piredda, Chiara
    Macauda, Angelica
    Zawirska, Daria
    Andersen, Niels Frost
    Nagler, Arnon
    Zaucha, Jan Maciej
    Mazur, Grzegorz
    Dumontet, Charles
    Watek, Marzena
    Jamroziak, Krzysztof
    Sainz, Juan
    Varkonyi, Judit
    Butrym, Aleksandra
    Beider, Katia
    Abildgaard, Niels
    Lesueur, Fabienne
    Dudzinski, Marek
    Vangsted, Annette Juul
    Pelosini, Matteo
    Subocz, Edyta
    Petrini, Mario
    Buda, Gabriele
    Razny, Malgorzata
    Gemignani, Federica
    Marques, Herlander
    Orciuolo, Enrico
    Kadar, Katalin
    Jurczyszyn, Artur
    Druzd-Sitek, Agnieszka
    Vogel, Ulla
    Andersen, Vibeke
    Reis, Rui Manuel
    Suska, Anna
    Avet-Loiseau, Herve
    Kruszewski, Marcin
    Tomczak, Waldemar
    Rymko, Marcin
    Minvielle, Stephane
    Campa, Daniele
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2022, 30 (04) : 474 - 479
  • [25] Polygenic risk scores for the prediction of cardiometabolic disease
    O'Sullivan, Jack W.
    Ashley, Euan A.
    Elliott, Perry M.
    EUROPEAN HEART JOURNAL, 2023, 44 (02) : 89 - 99
  • [26] A polygenic risk score for multiple myeloma risk prediction
    Federico Canzian
    Chiara Piredda
    Angelica Macauda
    Daria Zawirska
    Niels Frost Andersen
    Arnon Nagler
    Jan Maciej Zaucha
    Grzegorz Mazur
    Charles Dumontet
    Marzena Wątek
    Krzysztof Jamroziak
    Juan Sainz
    Judit Várkonyi
    Aleksandra Butrym
    Katia Beider
    Niels Abildgaard
    Fabienne Lesueur
    Marek Dudziński
    Annette Juul Vangsted
    Matteo Pelosini
    Edyta Subocz
    Mario Petrini
    Gabriele Buda
    Małgorzata Raźny
    Federica Gemignani
    Herlander Marques
    Enrico Orciuolo
    Katalin Kadar
    Artur Jurczyszyn
    Agnieszka Druzd-Sitek
    Ulla Vogel
    Vibeke Andersen
    Rui Manuel Reis
    Anna Suska
    Hervé Avet-Loiseau
    Marcin Kruszewski
    Waldemar Tomczak
    Marcin Rymko
    Stephane Minvielle
    Daniele Campa
    European Journal of Human Genetics, 2022, 30 : 474 - 479
  • [27] Polygenic risk scores for prediction of atrial fibrillation
    Maryam Kavousi
    Patrick T. Ellinor
    Netherlands Heart Journal, 2023, 31 (1) : 1 - 2
  • [28] The risk stratification and predictive performance of a new combined polygenic risk score for hepatocellular carcinoma
    Yu, Chengxiao
    Tang, Yuchen
    Liu, Maojie
    Xu, Xin
    Ge, Xinyuan
    Ma, Hongxia
    Jin, Guangfu
    Shen, Hongbing
    Song, Ci
    Hu, Zhibin
    JOURNAL OF GASTROENTEROLOGY, 2024, : 1011 - 1020
  • [29] Polygenic Risk Scores for cancer mortality prediction
    Sciurti, A.
    De Blasiis, M. R.
    Bolli, A.
    Busby, G.
    EUROPEAN JOURNAL OF PUBLIC HEALTH, 2023, 33
  • [30] On polygenic risk scores for complex traits prediction
    Zhao, Bingxin
    Zou, Fei
    BIOMETRICS, 2022, 78 (02) : 499 - 511