A planar defect spin sensor in a two-dimensional material susceptible to strain and electric fields

被引:15
|
作者
Udvarhelyi, Peter [1 ,2 ]
Clua-Provost, Tristan [3 ,4 ]
Durand, Alrik [3 ,4 ]
Li, Jiahan [5 ]
Edgar, James H. H. [5 ]
Gil, Bernard [3 ,4 ]
Cassabois, Guillaume [3 ,4 ]
Jacques, Vincent [3 ,4 ]
Gali, Adam [1 ,2 ]
机构
[1] Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary
[2] Budapest Univ Technol & Econ, Inst Phys, Dept Atom Phys, Muegyet Rakpart 3, H-1111 Budapest, Hungary
[3] Univ Montpellier, Lab Charles Coulomb, F-34095 Montpellier, France
[4] CNRS, F-34095 Montpellier, France
[5] Kansas State Univ, Tim Taylor Dept Chem Engn, Manhattan, KS 66506 USA
关键词
HEXAGONAL BORON-NITRIDE; NITROGEN-VACANCY CENTERS; QUANTUM EMITTERS; QUALITY;
D O I
10.1038/s41524-023-01111-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The boron-vacancy spin defect (V-B(-)) in hexagonal boron nitride (hBN) has a great potential as a quantum sensor in a two-dimensional material that can directly probe various external perturbations in atomic-scale proximity to the quantum sensing layer. Here, we apply first-principles calculations to determine the coupling of the V-B(-) electronic spin to strain and electric fields. Our work unravels the interplay between local piezoelectric and elastic effects contributing to the final response to the electric fields. The theoretical predictions are then used to analyse optically detected magnetic resonance (ODMR) spectra recorded on hBN crystals containing different densities of V-B(-) centres. We prove that the orthorhombic zero-field splitting parameter results from local electric fields produced by surrounding charge defects. This work paves the way towards applications of V-B(-) centres for quantitative electric field imaging and quantum sensing under pressure.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] COLLECTING TWO-DIMENSIONAL PHOSPHOLIPID CRYSTALS IN INHOMOGENEOUS ELECTRIC-FIELDS
    MILLER, A
    MOHWALD, H
    EUROPHYSICS LETTERS, 1986, 2 (01): : 67 - 74
  • [42] Tunable two-dimensional assembly of colloidal particles in rotating electric fields
    Egor V. Yakovlev
    Kirill A. Komarov
    Kirill I. Zaytsev
    Nikita P. Kryuchkov
    Kirill I. Koshelev
    Arsen K. Zotov
    Dmitry A. Shelestov
    Victor L. Tolstoguzov
    Vladimir N. Kurlov
    Alexei V. Ivlev
    Stanislav O. Yurchenko
    Scientific Reports, 7
  • [43] On the definition of an average strain tensor for two-dimensional granular material assemblies
    Bonelli, S.
    Millet, O.
    Nicot, F.
    Rahmoun, J.
    De Saxce, G.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2012, 49 (7-8) : 947 - 958
  • [44] Exact ground states of large two-dimensional planar Ising spin glasses
    Pardella, G.
    Liers, F.
    PHYSICAL REVIEW E, 2008, 78 (05):
  • [45] A High-Sensitivity Antenna Sensor for Two-Dimensional Strain Monitoring
    Chung, Kwok L.
    Wang, Lingling
    Liu, Ruiqi
    Luo, Jianlin
    Zhang, Chunwei
    2019 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT 2019), 2019,
  • [46] Sensing performance of knitted strain sensor on two-dimensional and three-dimensional surfaces
    Li, Yutian
    Miao, Xuhong
    Chen, Jonathan Y.
    Jiang, Gaoming
    Liu, Qing
    MATERIALS & DESIGN, 2021, 197
  • [47] Acoustic confinement and waveguiding in two-dimensional phononic crystals with material defect states
    Li, Yinggang
    Chen, Tianning
    Wang, Xiaopeng
    Ma, Ting
    Jiang, Ping
    JOURNAL OF APPLIED PHYSICS, 2014, 116 (02)
  • [48] Design of Two-Dimensional Photonic Crystal Defect Microcavity Sensor for Biosensing Application
    Sharan, Preeta
    Alrebdi, Tahani A.
    Alodhayb, Abdullah
    Upadhyaya, Anup M.
    SILICON, 2023, 15 (13) : 5503 - 5511
  • [49] Design of Two-Dimensional Photonic Crystal Defect Microcavity Sensor for Biosensing Application
    Preeta Sharan
    Tahani A. Alrebdi
    Abdullah Alodhayb
    Anup M. Upadhyaya
    Silicon, 2023, 15 : 5503 - 5511
  • [50] Two-dimensional material nanophotonics
    Fengnian Xia
    Han Wang
    Di Xiao
    Madan Dubey
    Ashwin Ramasubramaniam
    Nature Photonics, 2014, 8 : 899 - 907