Development of an individual postoperative prediction model for kidney cancer recurrence using machine learning (UroCCR study 120)

被引:0
|
作者
Margue, G. [1 ,2 ]
Ferrer, L. [2 ]
Etchepare, G.
Bensalah, K. [3 ]
Mejean, A. [4 ]
Roupret, M. [5 ]
Doumerc, N. [6 ]
Ingels, A. [7 ]
Boissier, R. [8 ]
Pignot, G. [9 ]
Parier, B. [10 ]
Paparel, P. [11 ]
Waeckel, T. [12 ]
Bigot, P. [13 ]
Colin, T. [2 ]
Bernhard, J. C. [1 ]
机构
[1] Bordeaux Univ Hosp, Dept Urol, Bordeaux, France
[2] Sophia Genet, Multimodal Res Team, Pessac, France
[3] Rennes Univ Hosp, Dept Urol, Rennes, France
[4] HEGP, APHP, Dept Urol, Paris, France
[5] La Pitie APHP, Dept Urol, Paris, France
[6] Toulouse Univ Hosp, Dept Urol, Toulouse, France
[7] Mondor APHP, Dept Urol, Paris, France
[8] APHM, Dept Urol, Marseille, France
[9] IPC, Dept Urol, Marseille, France
[10] Kremlin Bicetre, APHP, Dept Urol, Paris, France
[11] HCL, Dept Urol, Lyon, France
[12] Cean Univ Hosp, Dept Urol, Caen, France
[13] Angers Univ Hosp, Dept Urol, Angers, France
关键词
D O I
暂无
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
A0473
引用
收藏
页码:S674 / S675
页数:2
相关论文
共 50 条
  • [31] Development of a risk prediction model for personalized assessment of postoperative recurrence risk in colon cancer patients
    Zhang, Jing-Jing
    Liu, Ya-Meng
    Li, Ya-Wei
    Han, Zheng-Quan
    TRANSLATIONAL CANCER RESEARCH, 2024, 13 (11) : 5873 - 5882
  • [32] Development of a clinical prediction model for recurrence and mortality outcomes after Clostridioides difficile infection using a machine learning approach
    Ruzicka, Daniel
    Kondo, Takayuki
    Fujimoto, Go
    Craig, Andrew P.
    Kim, Seok-Won
    Mikamo, Hiroshige
    ANAEROBE, 2022, 77
  • [33] Prediction of Postoperative Lung Function in Lung Cancer Patients Using Machine Learning Models
    Kwon, Oh Beom
    Han, Solji
    Lee, Hwa Young
    Kang, Hye Seon
    Kim, Sung Kyoung
    Kim, Ju Sang
    Park, Chan Kwon
    Lee, Sang Haak
    Kim, Seung Joon
    Kim, Jin Woo
    Yeo, Chang Dong
    TUBERCULOSIS AND RESPIRATORY DISEASES, 2023, 86 (03) : 203 - 215
  • [34] Development of a machine learning-based model for predicting risk of early postoperative recurrence of hepatocellular carcinoma
    Zhang, Yu-Bo
    Yang, Gang
    Bu, Yang
    Lei, Peng
    Zhang, Wei
    Zhang, Dan-Yang
    WORLD JOURNAL OF GASTROENTEROLOGY, 2023, 29 (43) : 5804 - 5817
  • [35] Development of machine learning models for post-operative recurrence prediction in lung cancer patients
    Ranganathan, Dhakshinamoorthy Dhayanitha
    Kumar, Thirunavukkarasu Muthu
    Shanthi, Veerappapillai
    Ramanathan, Karuppasamy
    RESEARCH JOURNAL OF BIOTECHNOLOGY, 2023, 18 (10): : 227 - 234
  • [36] Development of optimised software fault prediction model using machine learning
    Juneja, Shallu
    Bhathal, Gurjit Singh
    Sidhu, Brahmaleen K.
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2024, 18 (02): : 1355 - 1376
  • [37] Development of a Nurse Turnover Prediction Model in Korea Using Machine Learning
    Kim, Seong-Kwang
    Kim, Eun-Joo
    Kim, Hye-Kyeong
    Song, Sung-Sook
    Park, Bit-Na
    Jo, Kyoung-Won
    HEALTHCARE, 2023, 11 (11)
  • [38] Development of a childhood asthma prediction model using machine learning approaches
    Kothalawala, D. M.
    Arshad, S. H.
    Holloway, J. W.
    Rezwan, F., I
    ALLERGY, 2020, 75 : 63 - 63
  • [39] Machine Learning Approach to Predict the Probability of Recurrence of Renal Cell Carcinoma After Surgery: Prediction Model Development Study
    Kim, HyungMin
    Lee, Sun Jung
    Park, So Jin
    Choi, In Young
    Hong, Sung-Hoo
    JMIR MEDICAL INFORMATICS, 2021, 9 (03)
  • [40] Development and validation of machine learning models for postoperative venous thromboembolism prediction in colorectal cancer inpatients: a retrospective study br
    Qin, Li
    Liang, Zhikun
    Xie, Jingwen
    Ye, Guozeng
    Guan, Pengcheng
    Huang, Yaoyao
    Li, Xiaoyan
    JOURNAL OF GASTROINTESTINAL ONCOLOGY, 2023, 14 (01) : 220 - +