Distribution of values of Gaussian hypergeometric functions

被引:0
|
作者
Ono, Ken [1 ]
Saad, Hasan [1 ]
Saikia, Neelam [1 ]
机构
[1] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
关键词
Gaussian hypergeometric functions; Distributions; Elliptic curves; SUPERCONGRUENCE CONJECTURE; ELLIPTIC-CURVES; HECKE OPERATORS; SERIES; TRACES; FROBENIUS; MODULARITY; NUMBER;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the 1980s, Greene defined hypergeometric functions over finite fields using Jacobi sums. The framework of his theory establishes that these functions possess many properties that are analogous to those of the classical hypergeometric series studied by Gauss and Kummer. These functions have played important roles in the study of Apery-style supercongruences, the Eichler-Selberg trace formula, Galois representations, and zeta-functions of arithmetic varieties. We study the value distribution (over large finite fields) of natural families of these functions. For the F-2(1) functions, the limiting distribution is semicircular (i.e. SU(2)), whereas the distribution for the F-3(2) functions is the Batman distribution for the traces of the real orthogonal group O-3.
引用
收藏
页码:371 / 407
页数:37
相关论文
共 50 条
  • [31] On values of hypergeometric functions with different irrational parameters
    Ivankov P.L.
    Journal of Mathematical Sciences, 2007, 146 (2) : 5674 - 5679
  • [32] Hypergeometric generating functions for values of Dirichlet and other L functions
    Lovejoy, J
    Ono, K
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (12) : 6904 - 6909
  • [33] On generating functions of multiple zeta values and generalized hypergeometric functions
    Aoki, Takashi
    Ohno, Yasuo
    Wakabayashi, Noriko
    MANUSCRIPTA MATHEMATICA, 2011, 134 (1-2) : 139 - 155
  • [34] On generating functions of multiple zeta values and generalized hypergeometric functions
    Takashi Aoki
    Yasuo Ohno
    Noriko Wakabayashi
    Manuscripta Mathematica, 2011, 134 : 139 - 155
  • [35] On New Linear Operator Associated with Gaussian Hypergeometric Functions
    Ghanim, Firas
    Darus, Maslina
    Gaboury, Sebastien
    JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES, 2015, 7 (03): : 121 - 130
  • [36] Monotonicity and concavity properties of the Gaussian hypergeometric functions, with applications
    Miao-Kun Wang
    Tie-Hong Zhao
    Xue-Jing Ren
    Yu-Ming Chu
    Zai-Yin He
    Indian Journal of Pure and Applied Mathematics, 2023, 54 : 1105 - 1124
  • [37] TRIPLE GAUSSIAN HYPERGEOMETRIC-FUNCTIONS .1.
    EXTON, H
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1994, 25 (10): : 1073 - 1079
  • [38] Monotonicity and concavity properties of the Gaussian hypergeometric functions, with applications
    Wang, Miao-Kun
    Zhao, Tie-Hong
    Ren, Xue-Jing
    Chu, Yu-Ming
    He, Zai-Yin
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (04): : 1105 - 1124
  • [39] Polynomial series expansions for confluent and Gaussian hypergeometric functions
    Luh, W
    Müller, J
    Ponnusamy, S
    Vasundhra, P
    MATHEMATICS OF COMPUTATION, 2005, 74 (252) : 1937 - 1952
  • [40] Starlikeness of Gaussian Hypergeometric Functions Using Positivity Techniques
    Priyanka Sangal
    A. Swaminathan
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 507 - 521