Control Problems for the Navier-Stokes System with Nonlocal Spatial Terms

被引:1
|
作者
Carreno, Nicolas [1 ]
Takahashi, Takeo [2 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Matemat, Casilla 110-V, Valparaiso, Chile
[2] Univ Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France
关键词
Navier-Stokes system; Controllability; Carleman estimates; Nonlocal spatial terms; NULL CONTROLLABILITY; INSENSITIZING CONTROLS; LOCAL-CONTROLLABILITY; PARABOLIC-SYSTEMS; HEAT; TRAJECTORIES; EQUATIONS;
D O I
10.1007/s10957-023-02321-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the local null controllability of a modified Navier-Stokes system where we include nonlocal spatial terms. We generalize a previous work where the nonlocal spatial term is given by the linearization of a Ladyzhenskaya model for a viscous incompressible fluid. Here, the nonlocal spatial term is more general and we consider a control with one vanishing component. The proof of the result is based on a Carleman estimate where the main difficulty consists in handling the nonlocal spatial terms. One key point corresponds to a particular decomposition of the solution of the adjoint system that allows us to overcome regularity issues. With a similar approach, we also show the existence of insensitizing controls for the same system.
引用
收藏
页码:724 / 767
页数:44
相关论文
共 50 条
  • [41] Spatial local solutions of the Navier-Stokes equations
    R. M. Garipov
    Journal of Applied Mechanics and Technical Physics, 2009, 50 : 261 - 269
  • [42] Spatial Asymptotic Expansions in the Navier-Stokes Equation
    Mcowen, Robert
    Topalov, Peter
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023,
  • [43] Spatial local solutions of the Navier-Stokes equations
    Garipov, R. M.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2009, 50 (02) : 261 - 269
  • [44] Spatial Asymptotic Expansions in the Navier-Stokes Equation
    Mcowen, Robert
    Topalov, Peter
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (04) : 3391 - 3441
  • [45] PROPERTIES OF SOLUTIONS OF SOME EXTREMAL PROBLEMS CONNECTED WITH THE NAVIER-STOKES SYSTEM
    FURSIKOV, AV
    MATHEMATICS OF THE USSR-SBORNIK, 1982, 118 (03): : 323 - 351
  • [46] Iterative methods for Navier-Stokes inverse problems
    O'Connor, Liam
    Lecoanet, Daniel
    Anders, Evan H.
    Augustson, Kyle C.
    Burns, Keaton J.
    Vasil, Geoffrey M.
    Oishi, Jeffrey S.
    Brown, Benjamin P.
    PHYSICAL REVIEW E, 2024, 109 (04)
  • [47] Inverse Problems for Stationary Navier-Stokes Systems
    Chebotarev, A. Yu
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2014, 54 (03) : 537 - 545
  • [48] AN ALGEBRAIC MULTIGRID SOLVER FOR NAVIER-STOKES PROBLEMS
    WEBSTER, R
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1994, 18 (08) : 761 - 780
  • [49] Inverse problems for stationary Navier-Stokes systems
    A. Yu. Chebotarev
    Computational Mathematics and Mathematical Physics, 2014, 54 : 537 - 545
  • [50] Symmetry Problems.The Navier-Stokes Problem
    Ramm A.G.
    Synthesis Lectures on Mathematics and Statistics, 2019, 11 (01): : 1 - 85