FEEDBACK LAW TO STABILIZE LINEAR INFINITE-DIMENSIONAL SYSTEMS

被引:2
|
作者
Ma, Yaxing [1 ]
Wang, Gengsheng [2 ]
Yu, Huaiqiang [1 ]
机构
[1] Tianjin Univ Tianjin, Sch Math, Tianjin 300354, Peoples R China
[2] Tianjin Univ Tianjin, Ctr Appl Math, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Stabilizability; feedback law; unbounded control operator; weak observability inequality; EQUATIONS; CONTROLLABILITY;
D O I
10.3934/mcrf.2022031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We design a new feedback law to stabilize the linear infinite dimensional control system, where the state operator generates a C0-group, and the control operator is unbounded. Our feedback law is based on the integration of a mutated Gramian operator-valued function. In the structure of the aforementioned mutated Gramian operator, we utilize the weak observability inequality in [21, 13] and borrow some idea used to construct generalized Gramian operators in [11, 23, 24]. Unlike most related works where the exact controllability is required, we only assume the above-mentioned weak observability inequality, which is equivalent to the stabilizability of the system.
引用
收藏
页码:1160 / 1183
页数:24
相关论文
共 50 条
  • [21] INFINITE-DIMENSIONAL LINEAR-SYSTEMS THEORY
    PRITCHARD, AJ
    PROCEEDINGS OF THE INSTITUTION OF ELECTRICAL ENGINEERS-LONDON, 1979, 126 (06): : 641 - 648
  • [22] Stability of conformable linear infinite-dimensional systems
    Sadek, Lakhlifa
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2023, 11 (03) : 1276 - 1284
  • [23] Infinite-dimensional linear systems: A distributional approach
    Opmeer, Mark R.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 : 738 - 760
  • [24] STABILITY OF LINEAR INFINITE-DIMENSIONAL SYSTEMS REVISITED
    PRZYLUSKI, KM
    INTERNATIONAL JOURNAL OF CONTROL, 1988, 48 (02) : 513 - 523
  • [25] Stability of conformable linear infinite-dimensional systems
    Lakhlifa Sadek
    International Journal of Dynamics and Control, 2023, 11 : 1276 - 1284
  • [26] Stabilization for Infinite-Dimensional Switched Linear Systems
    Zheng, Guojie
    Xiong, Jiandong
    Yu, Xin
    Xu, Chao
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (12) : 5456 - 5463
  • [27] Positive Stabilization of Infinite-dimensional Linear Systems
    Abouzaid, B.
    Winkin, J. J.
    Wertz, V.
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 845 - 850
  • [28] Robust stability of linear infinite-dimensional systems
    Bobylev, NA
    Bulatov, AV
    AUTOMATION AND REMOTE CONTROL, 1999, 60 (05) : 628 - 638
  • [29] Adaptive Tracking of Infinite-Dimensional Reference Models for Linear Infinite-Dimensional Systems in Hilbert Space
    Balas, Mark J.
    Frost, Susan A.
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 1270 - 1277
  • [30] Feedback-invariant subspaces in infinite-dimensional systems
    Morris, Kirsten
    Rebarber, Richard
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 2475 - 2480