FEEDBACK LAW TO STABILIZE LINEAR INFINITE-DIMENSIONAL SYSTEMS

被引:2
|
作者
Ma, Yaxing [1 ]
Wang, Gengsheng [2 ]
Yu, Huaiqiang [1 ]
机构
[1] Tianjin Univ Tianjin, Sch Math, Tianjin 300354, Peoples R China
[2] Tianjin Univ Tianjin, Ctr Appl Math, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Stabilizability; feedback law; unbounded control operator; weak observability inequality; EQUATIONS; CONTROLLABILITY;
D O I
10.3934/mcrf.2022031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We design a new feedback law to stabilize the linear infinite dimensional control system, where the state operator generates a C0-group, and the control operator is unbounded. Our feedback law is based on the integration of a mutated Gramian operator-valued function. In the structure of the aforementioned mutated Gramian operator, we utilize the weak observability inequality in [21, 13] and borrow some idea used to construct generalized Gramian operators in [11, 23, 24]. Unlike most related works where the exact controllability is required, we only assume the above-mentioned weak observability inequality, which is equivalent to the stabilizability of the system.
引用
收藏
页码:1160 / 1183
页数:24
相关论文
共 50 条
  • [1] On Linear Infinite-Dimensional Feedback Systems
    Cheremensky, A.
    2009 IEEE CONTROL APPLICATIONS CCA & INTELLIGENT CONTROL (ISIC), VOLS 1-3, 2009, : 997 - 1002
  • [2] Parametric state feedback design for linear infinite-dimensional systems
    Mohr, Andreas
    Deutscher, Joachim
    2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 2086 - 2091
  • [3] Locally positive stabilization of infinite-dimensional linear systems by state feedback
    Abouzaid, B.
    Achhab, M. E.
    Dehaye, J. N.
    Hastir, A.
    Winkin, J. J.
    EUROPEAN JOURNAL OF CONTROL, 2022, 63 : 1 - 13
  • [4] Well-posedness of infinite-dimensional linear systems with nonlinear feedback
    Hastir, Anthony
    Califano, Federico
    Zwart, Hans
    SYSTEMS & CONTROL LETTERS, 2019, 128 : 19 - 25
  • [5] Output and error feedback regulator designs for linear infinite-dimensional systems
    Xu, Xiaodong
    Dubljevic, Stevan
    AUTOMATICA, 2017, 83 : 170 - 178
  • [6] On identifiability of linear infinite-dimensional systems
    Orlov, Y
    SYSTEM MODELING AND OPTIMIZATION, 2005, 166 : 171 - 176
  • [7] DECOUPLING BY STATE FEEDBACK IN INFINITE-DIMENSIONAL SYSTEMS
    OTSUKA, N
    INABA, H
    OIDE, T
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1990, 7 (02) : 125 - 141
  • [8] Feedback invariance of SISO infinite-dimensional systems
    Morris, Kirsten
    Rebarber, Richard
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2007, 19 (04) : 313 - 335
  • [9] Output feedback regulator for infinite-dimensional systems
    Xu, Xiaodong
    Dubljevic, Stevan
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 5231 - 5236
  • [10] Feedback invariance of SISO infinite-dimensional systems
    Kirsten Morris
    Richard Rebarber
    Mathematics of Control, Signals, and Systems, 2007, 19 : 313 - 335