In this work, we study second-order Hamiltonian systems under small perturbations. We assume that the main term of the system has a mountain pass structure, but do not suppose any condition on the perturbation. We prove the existence of a periodic solution. Moreover, we show that periodic solutions of perturbed systems converge to periodic solutions of the unperturbed systems if the perturbation tends to zero. The assumption on the potential that guarantees the mountain pass geometry of the corresponding action functional is of independent interest as it is more general than those by Rabinowitz [Homoclinic orbits for a class of Hamiltonian systems, Proc. R. Soc. Edinburgh A 114 (1990) 33-38] and the authors [M. Izydorek and J. Janczewska, Homoclinic solutions for a class of the second-order Hamiltonian systems, J. Differ. Equ. 219 (2005) 375-389].
机构:
Univ Politecn Cartagena, Hosp Marina, Dept Matemat Aplicada & Estadist, Cartagena 30203, Region De Murci, SpainUniv Politecn Cartagena, Hosp Marina, Dept Matemat Aplicada & Estadist, Cartagena 30203, Region De Murci, Spain
Guirao, Juan L. G.
Llibre, Jaume
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, SpainUniv Politecn Cartagena, Hosp Marina, Dept Matemat Aplicada & Estadist, Cartagena 30203, Region De Murci, Spain
Llibre, Jaume
Vera, Juan A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Cartagena, Acad Gen Aire, Ctr Univ Def, Santiago De La Ribera, Region De Murci, SpainUniv Politecn Cartagena, Hosp Marina, Dept Matemat Aplicada & Estadist, Cartagena 30203, Region De Murci, Spain
机构:
Univ Nacl Trujillo, Dept Matemat, Ave Juan Pablo II S-N, Trujillo, PeruUniv Nacl Trujillo, Dept Matemat, Ave Juan Pablo II S-N, Trujillo, Peru
Torres, Cesar
Pichardo, Oliverio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Trujillo, Escuela Acad Profes Matemat, Ave Juan Pablo II S-N, Trujillo, PeruUniv Nacl Trujillo, Dept Matemat, Ave Juan Pablo II S-N, Trujillo, Peru