共 50 条
A REVERSE HOLDER INEQUALITY FOR FIRST EIGENFUNCTIONS OF THE DIRICHLET LAPLACIAN ON RCD(K, N) SPACES
被引:1
|作者:
Gunes, Mustafa Alper
[1
]
Mondino, Andrea
[1
]
机构:
[1] Univ Oxford, Math Inst, Radcliffe Observ, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
基金:
欧洲研究理事会;
关键词:
METRIC-MEASURE-SPACES;
RICCI CURVATURE;
ISOPERIMETRIC-INEQUALITIES;
RIEMANNIAN-MANIFOLDS;
EQUIVALENCE;
EIGENVALUES;
GEOMETRY;
BOUNDS;
SHARP;
D O I:
10.1090/proc/16099
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In the framework of (possibly non-smooth) metric measure spaces with Ricci curvature bounded below by a positive constant in a synthetic sense, we establish a sharp and rigid reverse-Holder inequality for first eigenfunctions of the Dirichlet Laplacian. This generalises to the positively curved and non-smooth setting the classical "Chiti Comparison Theorem". We also prove a related quantitative stability result which seems to be new even for smooth Riemannian manifolds.
引用
收藏
页码:295 / 311
页数:17
相关论文